

Saturday, October 27, 2018 7:00 AM - 3:45 PM

Changing Treatment Paradigms with Immunotherapy and Targeted Therapy in Advanced Non-Small-Cell Lung Cancer and Head & Neck Cancer

John V. Heymach, MD, PhD

Program Director

Professor and Chair. Department of Thoracic/Head & Neck Medical Oncology, Division of Cancer Medicine. The University of Texas MD Anderson Cancer Center. Houston, TX

Houston Marriott at the Texas Medical Center

> 6580 Fannin Street Houston, TX 77030

Phone: (713) 796-0080

Educational Grants:

Merck Sharp & Dohme Corp. AstraZeneca Pharmaceuticals LP **Bristol-Myers Squibb Company**

To view full slide handouts, visit www.cancernetus.com/lungh&n

For online registration and more information visit: www.cancernetus.com

Statement of Need/Program Overview

This symposium is intended to improve care of patients with non-small cell lung cancer and head & neck cancer by accelerating adoption of new guidelines and evidence-based practice change. The format will include didactic lectures from known opinion leaders, question and answer sessions, and ample opportunity for participant interaction with faculty.

Target Audience

This symposium is directed primarily to hematologists/oncologists, radiation oncologists, researchers, pharmacists, registered nurses, physician assistants, nurse practitioners and fellows in training interested in new development in non-small cell lung cancer and head & neck cancer. No specific skill or knowledge other than a basic training in hematology/oncology is required for successful participation in this activity.

Learning Objectives

- Select NSCLC patients based on new molecular profiling for personalized chemotherapy
- Outline the clinical data on the use of epidermal growth factor receptor (EGFR) and EGFR-T790M-inhibitors in the treatment of NSCLC
- Identify strategies to overcome secondary or acquired resistance to EGFR-positive and EGFR-T790M-positive NSCLC
- Outline the clinical data on the optimal use of anti-PD-1 and PD-L1 antibodies in the treatment of NSCLC
- Outline the clinical data on the optimal use of anti-PD-1, PD-L1 antibodies and combination approaches in the treatment of NSCLC
- Outline the mechanisms of action of PD-1 and PD-L1 blockade in SCCHN with high mutational burden and implication of immune resistance in SCCHN
- Evaluate PD-1/PD-L1 interactions that contribute to better outcomes for patients with SCCHN
- Identify strategies in the treatment of NSCLC patients with ALK inhibitors
- Identify strategies to overcome secondary or acquired ALK TKI resistance in patients with NSCLC

Changing Treatment Paradigms with Immunotherapy and Targeted Therapy in Advanced Non-Small-Cell Lung Cancer and Head & Neck Cancer

Agenda

SATURDAY – October 27, 2018

7:00 AM	Registration and Continental Breakfast
7:55 AM	Welcome and Introductions
	EGFR-TKI TARGETED THERAPY
8:00 AM	Pretest – Case Report VignettesJohn V. Heymach, MD, PhD / Don L. Gibbons, MD, PhD
8:15 AM	Molecular Profiling in the Treatment of NSCLC:John V. Heymach, MD, PhD Guidelines from the CAP, IASLC and AMP
8:45 AM	EGFR Inhibitors: Perspective on Molecular Markers andDon L. Gibbons, MD, PhD Patient Selection
9:15 AM	Emerging Strategies and Challenges Due to Secondary Don L. Gibbons, MD, PhD or Acquired EGFR-TKI Resistance
9:45 AM	Posttest – Case Report VignettesJohn V. Heymach, MD, PhD / Don L. Gibbons, MD, PhD
10:00 AM	BREAK
	IMMUNOTHERAPY - NSCLC
10:15 AM	Pretest – Case Report VignettesJohn V. Heymach, MD, PhD / Jianjun Zhang, MD, PhD
10:30 AM	Immunotherapy with PD-1/PD-L1 (Nivolumab, Pembrolizumab,John V. Heymach, MD
	Durvalumab) and Anti CTLA-4 (Ipilimumab) Antibodies in NSCLC
11:00 AM	Immunotherapy with Anti-PD-L1 (Pembrolizumab) and Jianjun Zhang, MD, PhD
	Combination Therapy Approaches in NSCLC
11:30 AM	Posttest – Case Report VignettesJohn V. Heymach, MD, PhD / Jianjun Zhang, MD, PhD
	IMMUNOTHERAPY – HEAD & NECK CANCER
11:45 AM	Pretest – Case Report Vignettes Tanguy Seiwert, MD
12:00 PM	Overview of Molecular, Histologic Tumor Testing, High Tanguy Seiwert, MD Mutational Burden and Implication of Immune Resistance in HPV-associated Head & Heck Cancer
12:30 PM	LUNCH
1:15 PM	Immunotherapy Options in the Treatment of Metastatic Tanguy Seiwert, MD Head & Heck Cancer
1:45 PM	Posttest – Case Report Vignettes Tanguy Seiwert, MD
	ALK-REARRANGED –TKI TARGETED THERAPY
2:00 PM	Pretest – Case Report VignettesAnne Tsao, MD / Vincent Lam, MD
2:15 PM	Overview of Molecular Targeted Therapy on the Outcome ofAnne Tsao, MD Early-stage NSCLC Patients with EML4-ALK Fusion Gene and the Application of TKIs
2:45 PM	BREAK
3:00 PM	Discuss Emerging Strategies and Challenges Due to Secondary Vincent Lam, MD or Acquired Resistance to Small Molecule TKIs in Patients with ALK-rearranged NSCLC
3:30 PM	Posttest – Case Report VignettesAnne Tsao, MD / Vincent Lam, MD
3:45 PM	AdjournmentJohn V. Heymach, MD, PhD

Faculty

Don L. Gibbons, MD, PhD

Assistant Professor, Depts. of Thoracic, Head/Neck Medical Oncology & Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX

John V. Heymach, MD, PhD

Professor and Chair, Department of Thoracic/Head and Neck Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX

Vincent Lam, MD

Assistant Professor, Department ofThoracic/Head and Neck Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX

Tanguy Y. Seiwert, MD

Assistant Professor, Head & Neck and Lung Cancer Division, The University of Chicago Medicine, Chicago, IL

Anne Tsao, MD

Professor, Department of Thoracic/Head and Neck Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX

Jianjun Zhang, MD, PhD

Assistant Professor, Department of Thoracic/Head and Neck Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX Changing Treatment Paradigms with Immunotherapy and Targeted Therapy in Advanced Non-Small-Cell Lung Cancer and Head & Neck Cancer

Disclosure of Relevant Financial Relationships

Amedco, assess conflicts of interest with its instructors, planners, managers and other individuals who are in a position to control the content of CME/CE activities. All relevant financial relationships are identified and conflicts of interest are resolved prior to the activity to ensure fair balance, scientific objectivity of studies utilized in this activity, and validity of patient care recommendations. Amedco is committed to providing its learners with high quality CME/CE activities and related materials that promote improvements or quality in healthcare and not a specific proprietary business interest of a commercial interest.

The faculty reported the following financial relationships or relationships to products or devices they or their spouse/life partner have with commercial interests related to the content of this CME/CE activity:

Name	Conflict of Interest Disclosures
Don L. Gibbons, MD, PhD	Advisory Board: Sanofi, Janssen Research and Development
	Research Support: Janssen Research and Development, AstraZeneca
John V. Heymach, MD, PhD	Advisory Board: BrightPath Biotherapeutics, Hengrui Therapeutics
	Consultant: AstraZeneca, Genentech, Inc., GlaxoSmithKline, Spectrum Pharmaceuticals, Foundation Medicine
Vincent Lam, MD	No relevant financial disclosures
Tanguy Y. Seiwert, MD	Consultant: Arduro, Astra Zeneca, Bayer, BMS, Merck, Nanobiotix Research Support: BMS, Jounce Therapeutics, and Merck
Anne Tsao, MD	Advisory Board: BMS, Genentech/Roche, Merck, Eli Lilly, Novartis, Ariad, EMD Serono, Boehringer Ingelheim, AstraZeneca, Takeda Oncology
Jianjun Zhang, MD, PhD	Advisory Board: AstraZeneca Consultant: Geneplus
	Speakers' Bureau: OrigiMed, Geneplus, Innovent

Kamatham A. Naidu, PhD	No relevant financial relationships
------------------------	-------------------------------------

All other individuals in a position to control content have no relevant financial relationships to disclose.

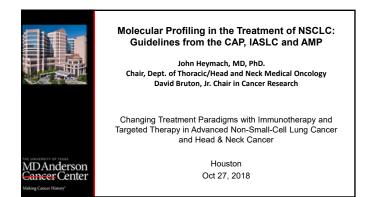
Changing Treatment Paradigms with Immunotherapy and Targeted Therapy in Advanced Non-Small-Cell Lung Cancer and Head & Neck Cancer

Physicians/Nurses/Pharmacists

In support of improving patient care, this activity has been planned and implemented by Amedco LLC and CancerNet. Amedco LLC is jointly accredited by the Accreditation Council for Continuing Medical Education (ACCME), the Accreditation Council for Pharmacy Education (ACPE), and the American Nurses Credentialing Center (ANCC), to provide continuing education for the healthcare team.

Credit Designation – Amedco LLC designates this live activity for a maximum of 6.5 AMA PRA Category 1 Credits[™] for physicians, 6.5 contact hours for nurses and 6.5 knowledge-based contact hours for pharmacists. Learners should claim only the credit commensurate with the extent of their participation in the activity.

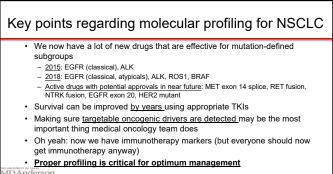
Participants may reserve guest rooms by calling (713) 796-0080

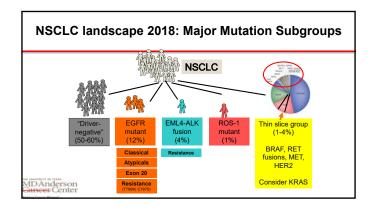

			and Targeted Therapy lead & Neck Cancer			
First Name Middle	e Initial La	st Name				
□ Physician □ Pa-C □ NP □ PhD	Pharmacist	🗆 Industry 🛛 🛛	🛛 Nurse 🗖 Other			
Mailing Address						
City State	_ Zip Code					
Phone Fax			Fax registration to:			
E-Mail			443-267-0016			
			Mail registration to:			
Speciality 860 Hebron Pkwy, Suite 1 Pharmacists only: Lewisville, TX 75057						
NABP e-profile # Bir	th Date (MMDD)): L				
Registration Fee	, , , , , , , , , , , , , , , , , , ,					
Registration fee partially covers breakfast buffet, lu	,					
	, ,	-	ation Regular Registration			
	(Up to 10/5/18)	•	, , ,			
Physicians	\$100.00	\$130.00	\$160.00			
Registered Nurses, Nurse Practitioners, Physician Assistants	\$75.00	\$95.00	\$115.00			
Pharmacists, Fellow	\$75.00	\$95.00	\$115.00			
 Industry † † Person(s) employed by for-profit organizations such as pharm 	\$350.00	\$400.00	\$450.00			
No Refund. Substitution is allowed		ompanies, and inter				
Payment may be made: MC Visa I	Discover 🛛 Chec	k				
Credit Card Number		Ехр	iration Date			
Name and address (as given on the monthly credit card statement) $_$						
Signature						

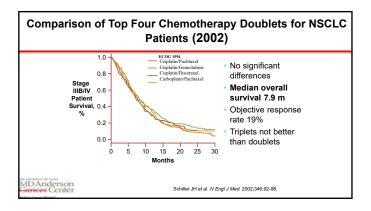
Register online at www.cancernetus.com

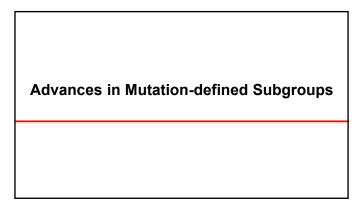
Please make checks payable to CancerNet, LLC. Mail checks to CancerNet, LLC, 860 Hebron Pkwy, Suite 1104, Lewisville, TX 75057 To reserve your place for the meeting, please complete the registration form and fax it to 443-267-0016. For questions, please call Brian Waggoner at 972-459-5222 or E-mail: brianw@cancernetus.com

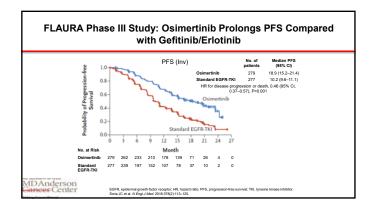
Molecular Profiling in the Treatment of NSCLC: Guidelines from the CAP, IASLC and AMP

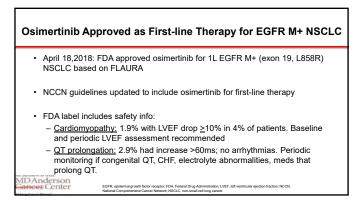

John V. Heymach, MD, PhD

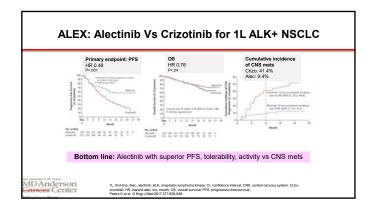

Conflict of Interest Disclosure

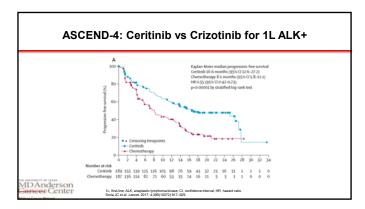

- Advisory Committees AstraZeneca, Boehringer Ingelheim, Exelixis, Genentech, GSK, Guardant Health, Hengrui, Lilly, Novartis, Spectrum, EMD Serono, and Synta
- Research Support AstraZeneca, Bayer, GlaxoSmithKline, Spectrum
- · Royalties and Licensing fees Spectrum

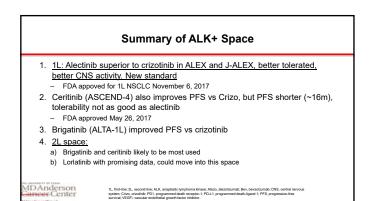

MD Anderson

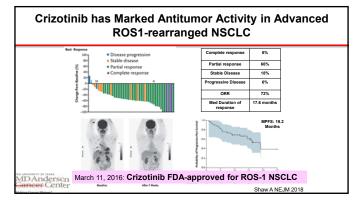


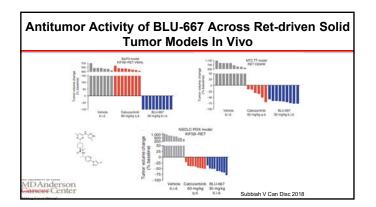

AD Anderson

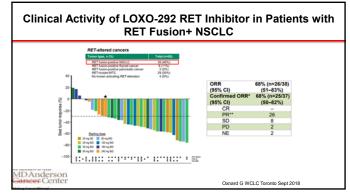


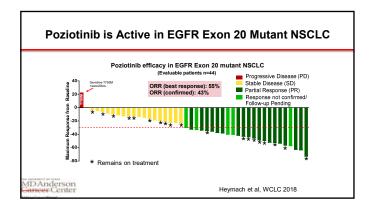


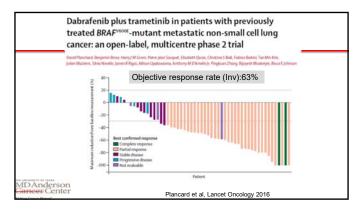


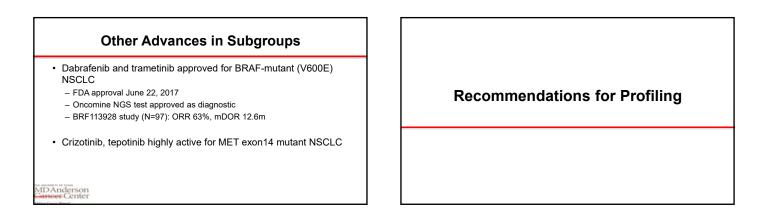


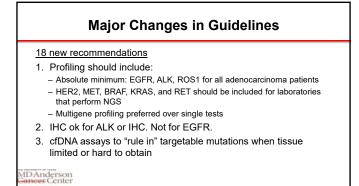


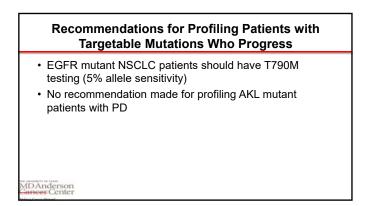


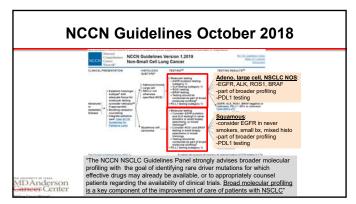








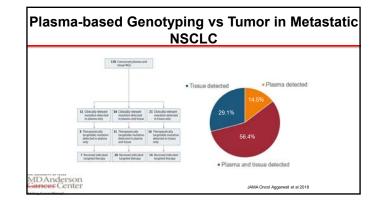


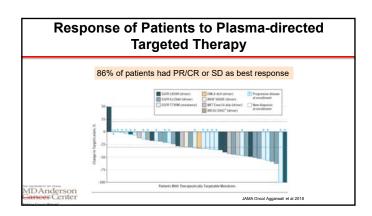


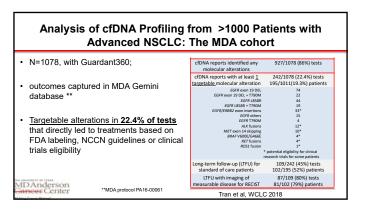
<section-header> Otasa CAP/IASLC/AMP Recommendations for Profiling Image: Im

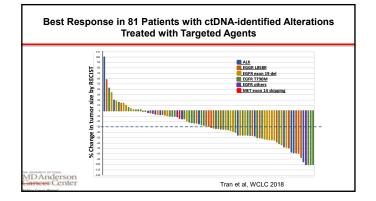
What About Plasma Assays?

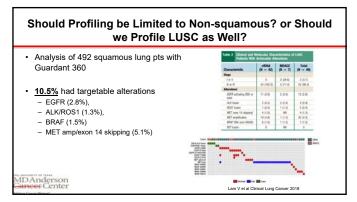
- On June 1, 2016, the FDA approved cobas plasma EGFR mutation test v2 (Roche) for the detection of EGFR exon 19 del and L858R
- First "liquid biopsy" approved
- Multiplexed targeted gene assays in plasma available (Guardant, FoundationOne, etc)


AD Anderson

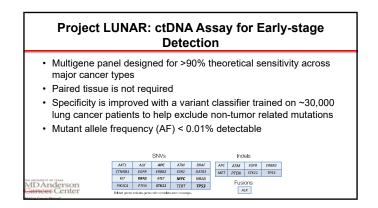

CAP/IASLC/AMP Recommendations for cfDNA

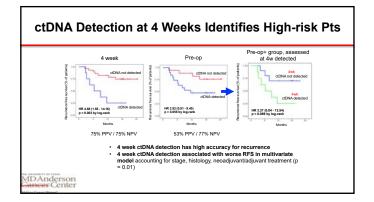

- cfDNA may be used to determine EGFR status when tissue limited or insufficient
- No recommendation for using cfDNA for primary diagnosis
- Sensitivity <80% but false positives low: can "rule in" but if not detected should try to get tissue

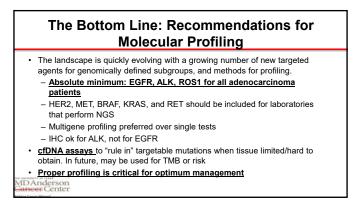

AD Anderson

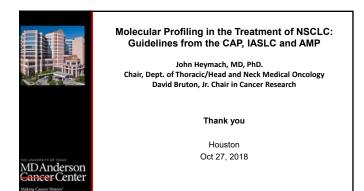

Looking Ahead: Potential Applications of Bloodbased Profiling in the Future (not currently recommended)








ctDNA First, Tissue First, or Concurrently?							
Tissue first • Tissue often needed anyway for diagnosis • May need PD-L1 • More cost effective But: • If no actionable alterations seen, do you send ctDNA anyway? Or potentially miss some? • Delays if QNS tissue	ctDNA first Easier for patient Typically quicker- no need to wait for biopsy But: If no actionable seen, need to send tissue Might need PD-L1 anyway	 <u>concurrent</u> Actionable results as quickly as possible (may be important for early stage in future) Increases likelihood of catching targetable alteration- probably the most impactful thing an oncologist can do <u>But:</u> Cost 					



ICON: Prospective Trial for Comprehensive, Longitudinal Immunogenomic Profiling of Resected, Early-stage Lung Cancers Goal: Determine MRD prevalence (detected by ctDNA) in resected, early-stage NSCLC and correlate with recurrence free survival

EGFR Inhibitors: Perspective on Molecular Markers and Patient Selection

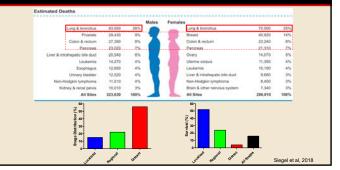
Don L. Gibbons, MD, PhD

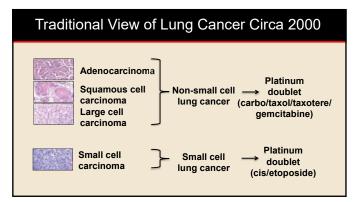
EGFR Inhibitors: Perspective on Molecular Markers and **Patient Selection**

October 27, 2018

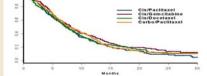
Don L. Gibbons, MD, PhD

Director, Translational Genetic Models Laboratory, Dept. of Thoracic/Head & Neck Medical Oncology, Dept. of Molecular and Cellular Oncology, MD Anderson Cancer Center, Houston, TX

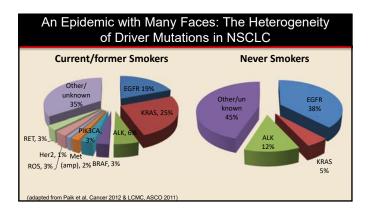

Conflict of Interest Disclosure

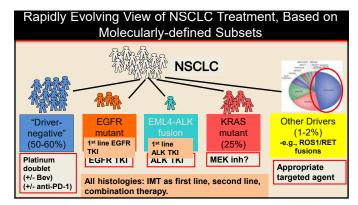

Advisory Board: Janssen R&D and Sanofi. Research Funding: Janssen R&D and AstraZeneca.

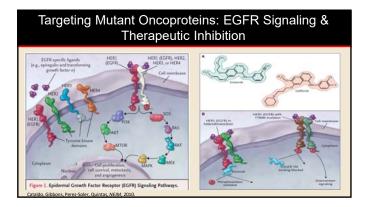
Agenda

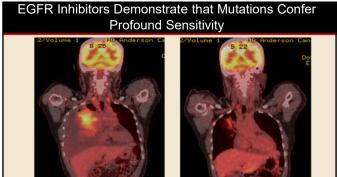

- · Evolution of thinking about lung cancer heterogeneity & targetable drivers, e.g. mEGFR
- · Current first-line drugs and the evolving usage based on common resistance mechanisms
- · The potential for & cautions of TKI combinations
- · New advances in TKI unresponsive EGFR mutations

Lung Cancer has High Disease Burden and Mortality

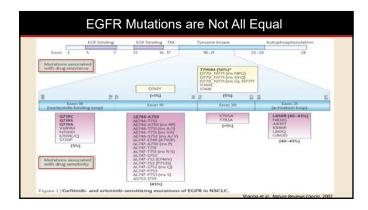



Similar Response Rates Among Frontline Chemotherapy – No breakout winner COMPARISON OF FOUR CHEMOTHERAPY REGIMENS FOR ADVANCED NON-SMALL-CELL LUNG CANCER JOAN H. SCHLER, M.D., DAVD HARRHISTON, PILD., CHANDRA P. BELAN, M.D., COREY LANGER, M.D., ALAN SANDLER, M.D., JAMES KROOK, M.D., JURIMIS ZHJ, PILD., AND DAVID H. JOHNSON, M.D., FOR THE EASTERN COOPERATION CONCERNING DRIVEN GROUP •All randomized Survival by Treatment Group Stage IV results

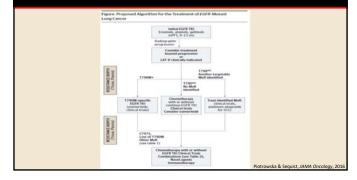



studies had similar

•Treatment selected based on side effect profile



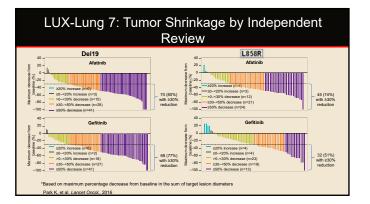
October 2010



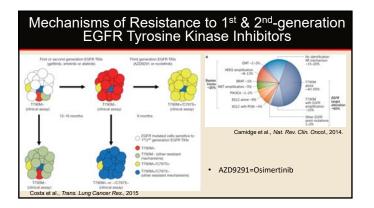
Blood & Tissue Mutation Testing

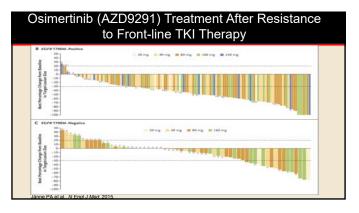
- When possible, obtain a tissue biopsy for testing (or rebiopsy at progression)
- Cobas EGFR mutation test v2, FDA approved 6/1/16
- First approved blood-based genetic test for EGFR mutations
- Assays for 42 mutations in exons 18-21
- Blood-based testing with multiple assays is being increasingly used
 - NGS for multigene panels with Guardant 360 and Foundation One Liquid
 - Other tests use ddPCR or BEAMing techniques

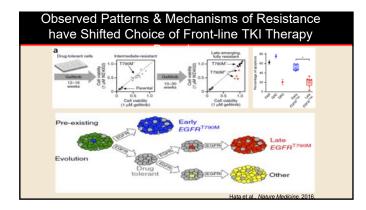
Response Evaluation	Criteria in Solid Tumors (RECIST)	Therapy as Measured by		
50	EGFR L858R (driver) EGFR Ex19del (driver) EGFR T250M (resistance)	EML4-ALK (driver) BRAF V600E (driver) MET Exan14 skip (driver) BRCA2 E842* (driver)	Progressive disease at enrollment New diagnosis at enrollment	show stats and outcomes
25- 26				
Target Lesion,				
A				


Sequential Treatment Strategy for EGFR Mutant NSCLC

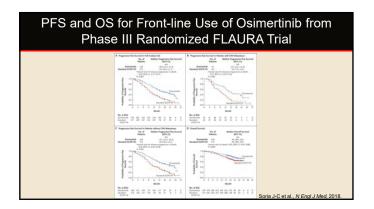
Choice of First-line Therapy

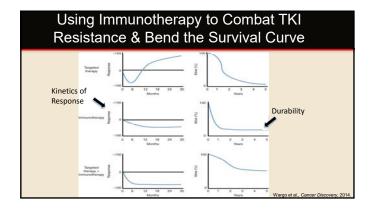

- Erlotinib, gefitinib and afatinib all approved
- Use had been somewhat interchangeable, or dependent upon toxicity profiles, until data from head-to-head comparisons
- And now dacomitinib and osimertinib approved in 2018
- Resistance patterns between the 1st, 2nd & 3rd
 generation TKI's now critical to selection

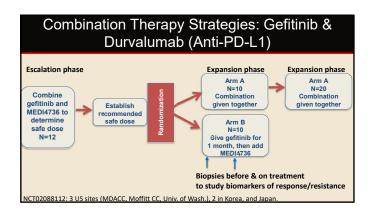

LUX-Lung 7: PFS by Independent Review bility 0.73 (0.57 proba 0.6 ated PFS p 0.4 Estin 0.2 33 36 39 42 No. at risk 47 22 160 159 142 132 67 52 112 106 94 83

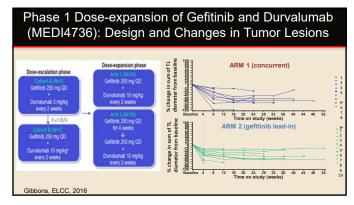


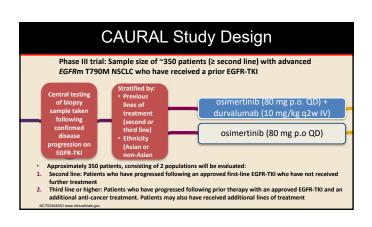

LUX-Lung 7: Drug-related AEs (>10%)

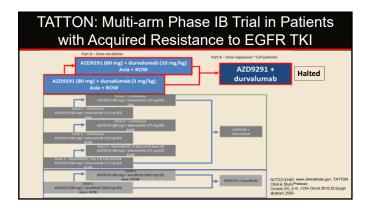

		Afatinib (n=160)			Gefitinib (n=159)	
AE category, n (%)	All	Grade 3	Grade 4	All	Grade 3	Grade 4
Diarrhea	144 (90.0)	19 (11.9)	1 (0.6)	97 (61.0)	2 (1.3)	
Rash/acne*	142 (88.8)	15 (9.4)		129 (81.1)	5 (3.1)	
Stomatitis*	103 (64.4)	7 (4.4)		38 (23.9)		
Paronychia*	89 (55.6)	3 (1.9)		27 (17.0)	1 (0.6)	
Dry skin	52 (32.5)			59 (37.1)		
Pruritus	37 (23.1)			36 (22.6)		
Fatigue*	33 (20.6)	9 (5.6)		23 (14.5)		
Decreased appetite	26 (16.3)	1 (0.6)		19 (11.9)		
Nausea	26 (16.3)	2 (1.3)		22 (13.8)		
Alopecia	17 (10.6)			24 (15.1)		
Vomiting	17 (10.6)			6 (3.8)	1 (0.6)	
ALT increased	15 (9.4)			38 (23.9)	12 (7.5)	1 (0.6)
AST increased	10 (6.3)			33 (20.8)	4 (2.5)	

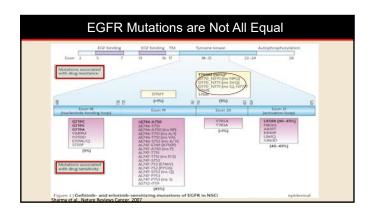


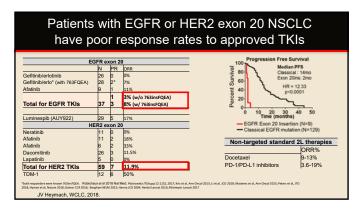


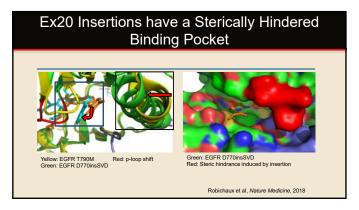

	1430	III FLAU	INA IIIai
Linguage	No. of Patients	Haiard Ratio for Disease Programm	er er Deuth (1975-05
David	100		
Lighted and private analysis			846 (610, 617)
The property of her order and			044 (017-017)
in the second seco		100	
The second se	28	and and	218 (54)-0.03
Female	116		640 m 10-0 12
Age of termining			The second se
- 46 pr	216		0.44 (0.10-0.10)
with an	218		0.49 (0.15-0.67)
Aug.			
Asian	347		835 (542-9.10)
Ron-Autor	. 201		8.54 (8.25-0.46)
Density hotes			100 A 100 A 100 A
744	288		0.48 (0.54-0.68)
10 Mar 10 20 V (2014 U 10			845 (£34-836)
Shawit or Inseted SNS melanism	ey all brief arrity		
- 10 Mar 1 (1997) (1997)	10000		0.47 (638-87%)
No.	440		5-M (216-639)
WHO performance (Mine)			1100000000
	228		8.29 (6.27 - 6.34)
BUT material of antipetionic			0.30 (0.58-0.64)
EUT materia a systematic			041 032 034
Latan	344	100	640 (8.12-0.34) 631 (8.34-0.71)
BCFE mutatest by considering for		100	
Pastine Approximation of the second s	110		Bar (0) = 510
Pageting Control (1997)	104	100	0.45 (0.25-0.25)
Cantula conferred ICPR man		100	6.04 (C.14 - C.14)
Cartrals partnered ECPE manual Received	-		0.00 (0.04-0.04)
Progetice		100	9C P6-40

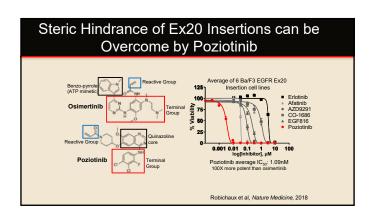

Trials with EGFR TKI-IMT Combination


- Keynote 021: cohort E, F (+erlotinib, gefitinib), first line
- Pembrolizumab + afatinib (UC Davis), erlotinib failure
- Nivolumab + erlotinib or Crizotinib (U Utah), 1st line
- Atezolizumab + erlotinib or Alectinib, 2nd line, phase I/2
- TATTON: Osimertinib+Durvalumab, 1st, 2nd line: Halted
- CAURAL : phase III, (Osi+Durva vs Osi) : Halted
 Rociletinib + aterolizumab (IICLA) 2nd line : discu
- Rociletinib + atezolizumab (UCLA), 2nd line : discontinued
 Gefitinib + durvalumab (MDACC & multisite) : finished accrual,
- data maturing

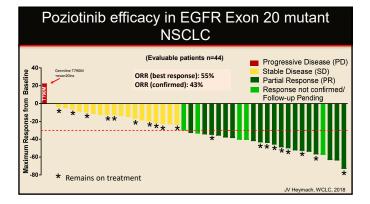


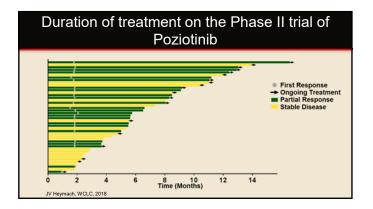

Dose-expansion Phase: Overall Tolerability (Safety Analysis Set)					
Patients experiencing an event ^a	Arm 1 N=10 (%)	Arm 2 N=10 (%)	Total N=20 (%)	•Most common ^b treatment-related AEs:	
Treatment-related AE	10 (100)	10 (100)	20 (100)	-Arm 1	
All-cause CTC Grade 3–4 AE	5 (50)	7 (70)	12 (60)	 Diarrhoea (n=8). 	
ALT increased	3 (30)	5 (50)	8 (40)	ALT increased (n=7),	
Aplastic anemia	0	1 (10)	1 (5)	rash (n=6)	
AST increased	U	3 (30)	3 (15)	–Arm 2	
Bone pain	1 (10)	0	1 (5)	 Diarrhoea (n=6), 	
Diarrhoea	0	1 (10)	1 (5)	ALT increased (n=6), pruritis	
Dry skin	1 (10)	0	1 (5)	(n=6)	
Hyperglycaemia	1 (10)	0	1 (5)	-Treatment-related AEs leading to	
Hyponatraemia	1 (10)	0	1 (5)	discontinuation:	
Pneumonitis	0	1 (10)	1 (5)	•Arm 2 only	
Urinary tract infection	1 (10)	0	1 (5)	 Increased ALT and / or AST 	
Treatment-related CTC Grade 3–4 AE	4 (40)	7 (70)	11 (55)	(n=3), pneumonitis (n=1)	
All-cause serious AE	2 (20)	2 (20)	4 (20)		
Treatment-related AE → discontinuation	0	4 (40)	4 (20)	Data as of 15 Sept 2015	
N.T. alanine aminotransferase; AST, aspartate aminotransferase Patients may have experienced >1 AE; "occurring in over half (>5) of patient rm 1: gefitninb 250 mg QD plus durvalumab 100 mg/kg every 2 weeks rm 2: sefitninb 250 mg QD monotherary for 4 weeks followed by sefitninb 2:			2 marks	Gibbons, ELCC, 2016	





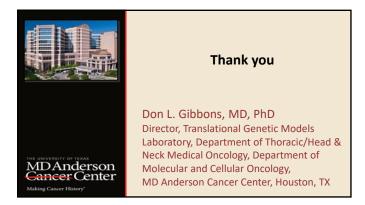
Increased ILD with Osimertinib and Durvalumab Combination					
Part A	6/23 (26%)				
Dose 1: Osimertinib 80 mg QD / durvalumab 3 mg/kg Q2W	2/10 (20%)				
Dose 2: Osimertinib 80 mg QD / durvalumab 10 mg/kg Q2W	4/13 (31%)				
Part B: Osimertinib 80 mg QD / durvalumab 10 mg/kg Q2W	7*/11 (64%)				
Part A and Part B 13/34 (38%; 95% CI 18, 52) ¹					
'5 events were Grade 3/4 and there were no fatalities; most cases were managed using steroids					
Osimertinib monotherapy 35/1207 (2.9%) (entire clinical programme, Phase I and II)					
Durvalumab monotherapy	23/1149 (2.0%)				
Ahn, ELCC, 2016	"One patient reported ILD following 13 Nov 2015 data cut-off TATTON Population: safety analysis set: data cut-off: 13 Nov 2015				




Patient characteristics from the Phase II trial of Poziotinib						
		EGFR cohort	HER2 cohort			
	Characteristic	Total (n=50)	Total (n=13)			
	Female/Male n(%)	30 (60%) / 20 (40%)	11 (85%) / 2 (15%)			
	Median age (range)	62 (29-77)	60 (54-64)			
	Brain metastases	14 (28%)	4 (31%)			
	Mutation type					
	Exon 20 insertion n (%)	46 (92%)	13 (100%)	1		
	Exon 20 point mutation	4 (8%)	0 (0%)	1		
	Prior systemic therapy			1		
	Naïve	3 (6%)	2 (15%)	1		
	1 prior	13 (26%)	6 (46%)	1		
	2 prior	17 (34%)	2 (15%)	1		
	3 prior	11 (22%)	1 (8%)			
	≥4 prior	6 (12%)	2 (15%)			
	Prior platinum n (%)	43 (86%)	10 (77%)			
	Prior TKI n (%)	17 (34%)	2 (15%)	1		
	Prior PD1/PDL1 inhibitor n (%)	27 (54%)	8 (62%)	JV Heymach, WCLC, 2018		

Safety Summary from the Phase II trial of Poziotinib

	(N=63)	_				
All Cause AE N(%)	N (%)					
Grade 3-4	50 (79%)					
Grade 5	12 (19%)					
Treatment related AEs N (%)						
Grade 3-4	35 (56%)					
Grade 5*	1 (1.5%)					
AE leading to treatment dose reduction N (%)	38 (60%)	Afatinib (Lux-Lung 3): 52% dose reduction, 8% discontinuation				
AE leading to treatment discontinuation N (%)	2 (3%)	Dacomitinib (Archer1050): 67% dose reduction, 10% discontinuation				
with 3 prior lines of treatment presented with dyspess and PD, dds included hymphangits (presed, infection, vs presentation). It was refractory to steroids and a. Okcide treating physican attributed is a "possibly related" to drug vs PD. Sequet et al. (20 2013, We et al. (annet Occol 2017) . JV Hervmarch WCI C. 2018						


Patient charac	teristics	from th	ne Pha	se II 1	trial of Poziotinib							
Treatment related AEs in >10% of patients (N=63)												
	AE	All Grade N (%)		Grade 5 N(%)								
	Diarrhea	44 (69.8%)	11 (17.5%)	-								
	Oral mucositis	44 (69.8%)	1 (1.6%)	-								
	Paronychia	38 (60.3%)	6 (9.5%)	-								
	Dry skin	37 (58.7%)	-	-								
	Skin rash	35 (55.6%)	22 (34.9%)	-								
	Alopecia	22 (34.9%)	-	-								
	Anorexia	19 (30.2%)	-	-								
	Nausea	15 (23.8%)	5 (7.9%)	-								
	Vomiting	13 (20.6%)	3 (4.8%)	-								
	Pruritus	9 (14.3%)	-	-								
	Weight loss	8 (12.7%)	3 (4.8%)	-								
	Weight loss	8 (12.7%)	3 (4.8%)	-								
	Fatigue	7 (11.1%)	3 (4.8%)	-								
	Hypokalemia	5 (7.9%)	2 (3.2%)	-								
JV Heymach, WCLC, 2018												

Take Home Points...

- Even after 15 years this is a continuously changing space diagnostically & therapeutically
- Resistance is still the biggest problem, but sequential testing & therapies make this more manageable
- EGFR TKI-based combinations may be a better option in some cases, but can have unexpected side effects.
- New treatment options are emerging for mutational types not sensitive to prior TKIs

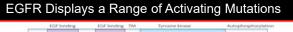
Emerging Strategies and Challenges Due to Secondary or Acquired EGFR-TKI Resistance

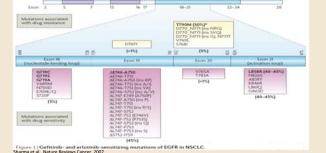
Don L. Gibbons, MD, PhD

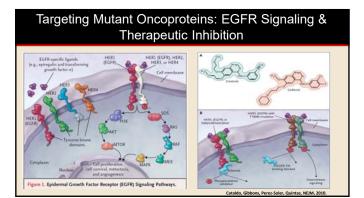
Emerging Strategies and Challenges Due to Secondary or Acquired EGFR-TKI Resistance

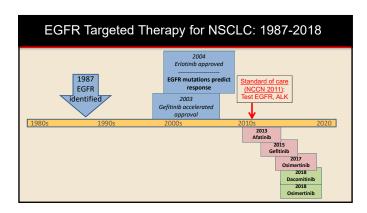
October 27, 2018

Don L. Gibbons, MD, PhD Director, Translational Genetic Models Laboratory, Department of Thoracic/Head & Neck Medical Oncology, Department of Molecular and Cellular Oncology, MD Anderson Cancer Center, Houston, TX

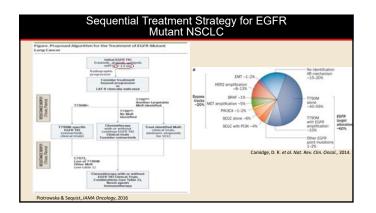

Conflict of Interest Disclosure

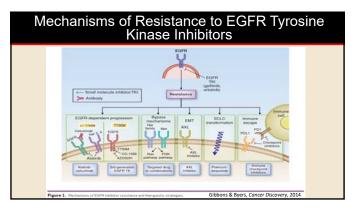

Advisory Board: Janssen R&D and AstraZeneca. Research Funding: Janssen R&D and AstraZeneca.

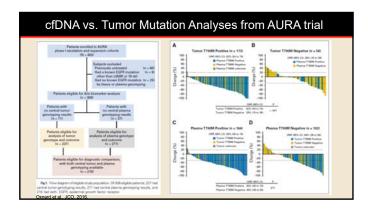

Agenda

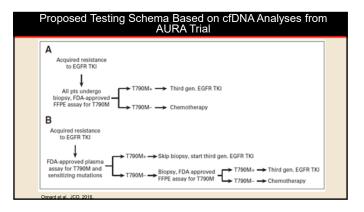

- Treating the common resistance mechanisms

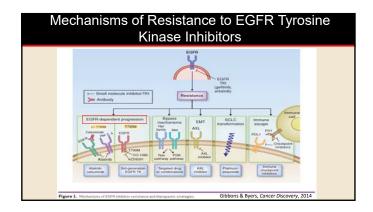
 First-line: T790M +/-, etc.
 T790M: C797S
- How the face of resistance is changing due to changing first-line drugs
- · Development of new combinations

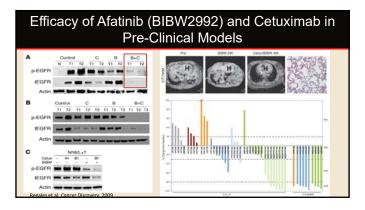


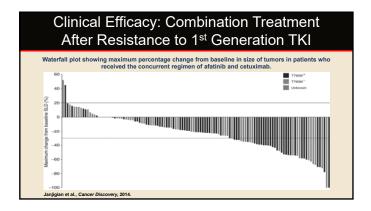


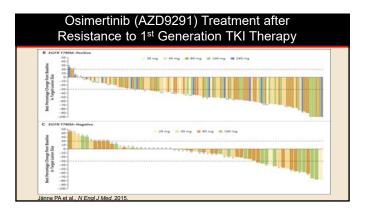


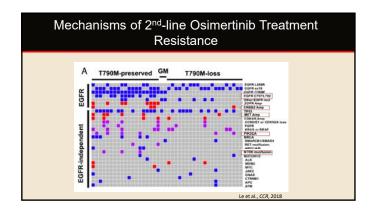


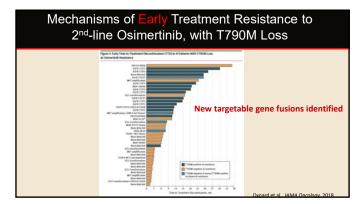

1

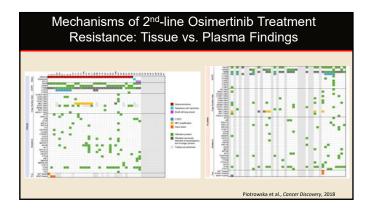


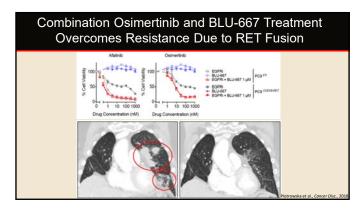


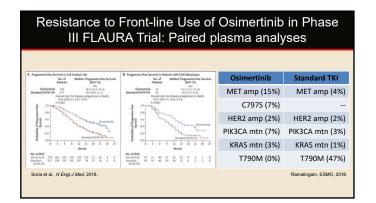


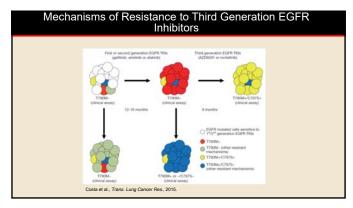


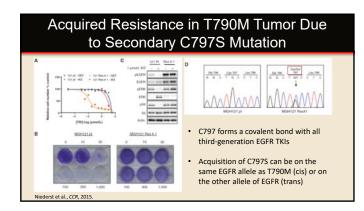


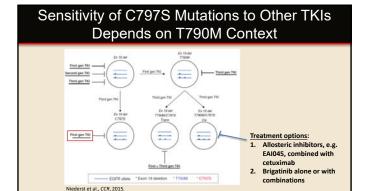


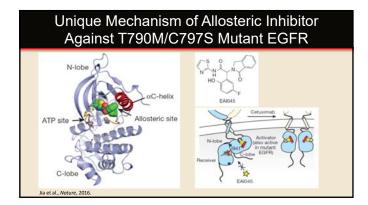


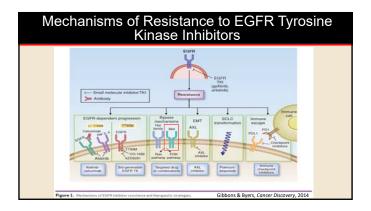


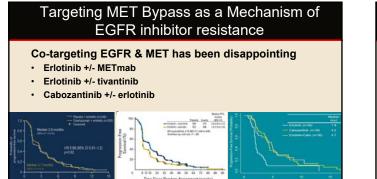


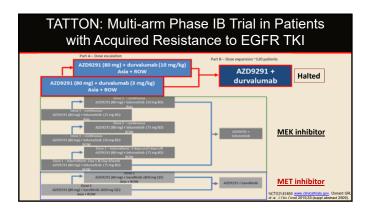


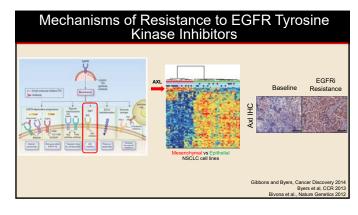


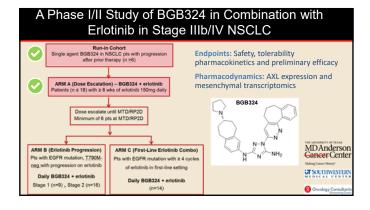


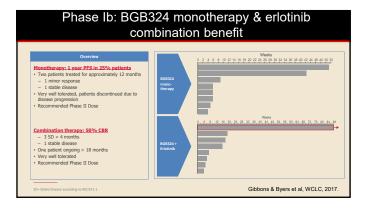


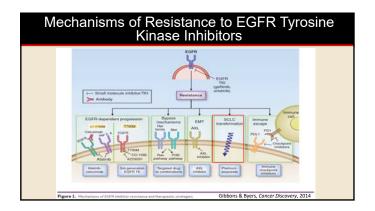


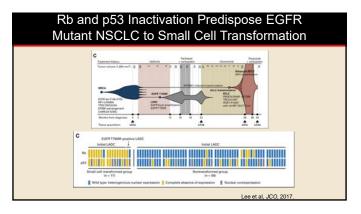

Scagliotti et al, JCO, 2015

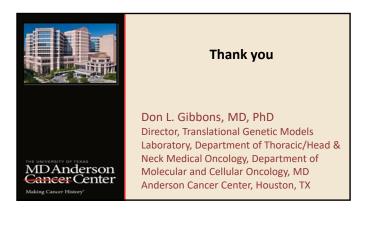

Neal et al, ASCO, 2015

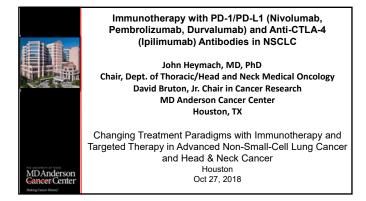

Spigel et al, ASCO, 2014


Ongoing Trials to Target Bypass Pathways


9 combination trials of MET & EGFR kinase inhibitors underway Most in EGFR-mutant disease with acquired resistance EGF816 Cofitinih Crizotinib Phase 1 NCT00965731 NCT01121575 Phase 2 ICT01866410 Cab Savolitinib Phase 1b NCT02374645 INC280 Phase 1b/2R NCT0268661 Phase 1b/2 NCT02335944 MSC2156119J Phase 1b/2R NCT01982955 2R = randomized phase II Clinicaltrials.gov



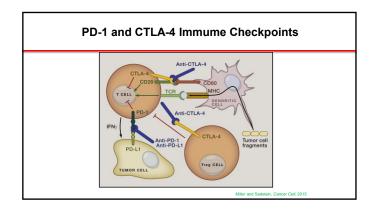


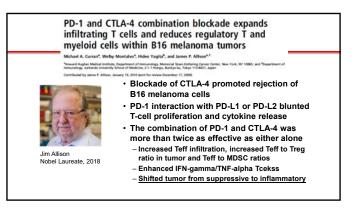

Take Home Points...

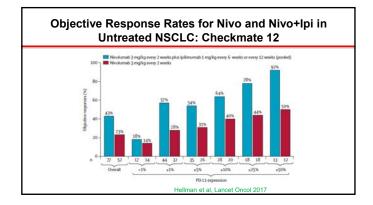
- With 2nd and 3rd generation EGFR TKIs, patterns of resistance are evolving & new targetable alterations have been identified
- Serial monitoring/mutation testing is SOC to determine the basis for resistance in each patient
- · Testing increasingly incorporates blood-based testing
- Additional new combination and sequential strategies to combat resistance mechanisms are in clinical trials

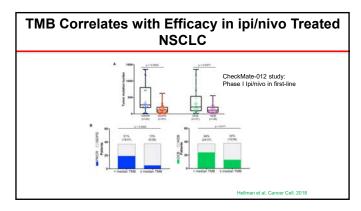
Immunotherapy with PD-1/PD-L1 (Nivolumab, Pembrolizumab, Durvalumab) and Anti CTLA-4 (Ipilimumab) Antibodies in NSCLC

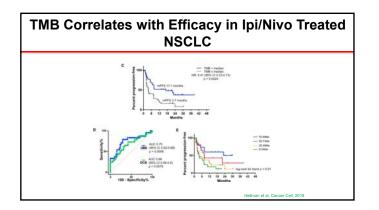
John V. Heymach, MD

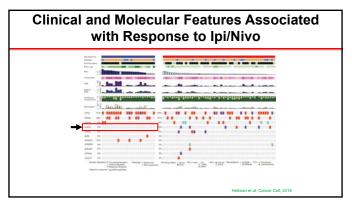


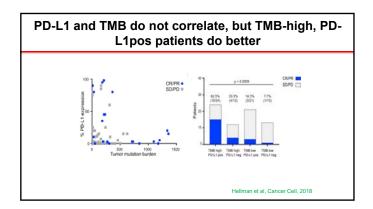

Conflict of Interest Disclosure

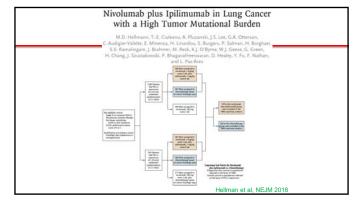

Advisory Committees – AstraZeneca, Boehringer Ingelheim, Exelixis, Genentech, GSK, Guardant Health, Hengrui, Lilly, Novartis, Spectrum, EMD Serono, and Synta

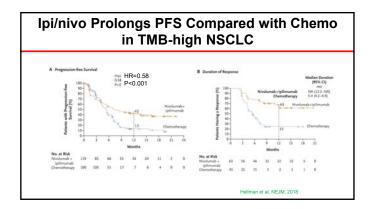

Research Support – AstraZeneca, Bayer, GlaxoSmithKline, Spectrum

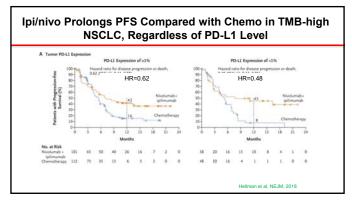

Royalties and Licensing fees - Spectrum

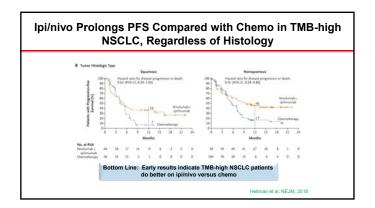


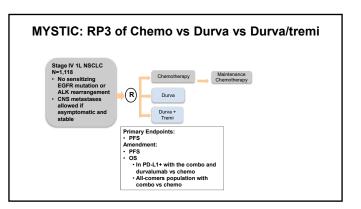


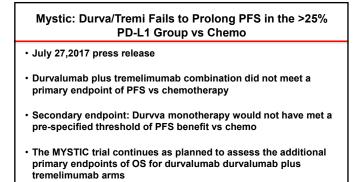


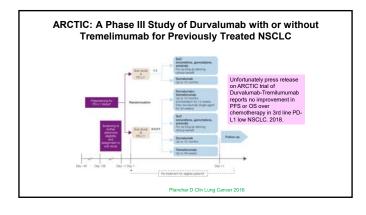


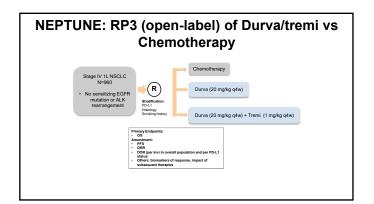




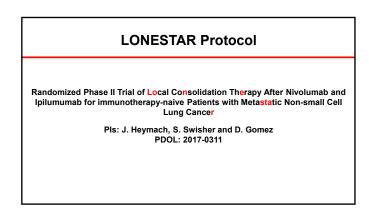


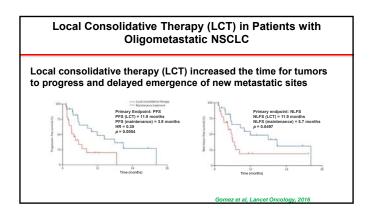


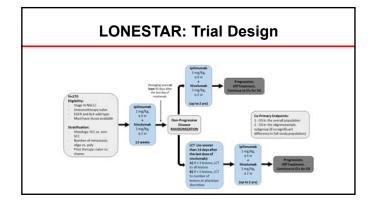


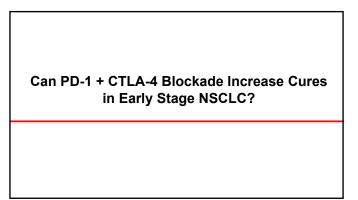

Table 1. Treatment-Related Adverse 8 or Chemotherapy.*	wents Reported i	n at Least 30% of 1	Patients Treated	eith Nivolumah pi	en ipilinamah, I	tirolumah,
freed	Nicolumah pius ipilimumah (N= 526)		Nieslanab (N = 395)		Chemotherapy (N=128)	
	Any Grade	Grade 3 or 4	Any Grade	Grade 3 or 4	Any Grade	Grade 3 or
	- 15 AC 1998	2010/02/2017	number of patients (percent)		2010/02/02	NO 887773
Any event	413 (75.2)	180 (31.2)	251 (64.2)	74 (18.9)	450 (80.7)	206 (34.1)
And Residence	110 (2004)	100 00 11	AL (10-7)	Page at	19 (19.9)	#1 (LW-2)
Any event leading to docontinuation?	100 (37.4)	69 (12.0)	45 (11.5)	37 (6.9)	51 (8.9)	28 (4.9)
Rash	96 (36.7)	3 (1.6)	43 (11.0)	3 (0.8)	29 (5.1)	
Diarthea	94 (26.7)	9 (3.4)	44 (13.3)	3 (0.0) E	55 (9.6)	4 (0.7)
Prurbus	81 (54.3)	3 (9.5)	30 (7.7)	0	5 (0.9)	.0
Faligue	76 (13.2)	8 (2.4)	43 (11.0)	2 (0.5)	105 (18.4)	8 (1.4)
Decreased appetite	73 (12.7)	1,031	25 (6.4)	0	120 (19.3)	6(1.1)
Hypothyroidism	67 (11.6)	3 (6.3)	25 (6.4)	3 (0.3)	0	0
Asthenia	36 (9.7)	7 (1.2)	29 (7.4)	2 (9.3)	72 (12.6)	5 (0.9)
Nauries	16 (9.7)	3 (0.5)	21 (5.4)	1 (0.7)	205 (34.0)	12 (2.1)
Veniting	27 (4.7)	2 (0.3)	10 (2.4)	1 (0.3)	26 (13.3)	13 (2.3)
Constipution	23 (4.0)	0	6 (1.5)	0	86 (15.1)	2 (0.4)
Aremia	23 (4.0)	9 (5.4)	11 (2.8)	2 (0.5)	183 (32.1)	64 (11.2)
Neutrophil count decreased	4 (0.7)		.0	0	64 (11.2)	36 (6.3)
Neutropenia	1 (9.2)	0	1.02.70		97 (17.05	54 (9.5)

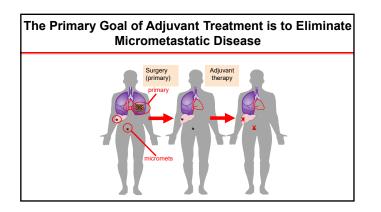
Other Combinations Targeting the PD-1 + CTLA-4 Pathways

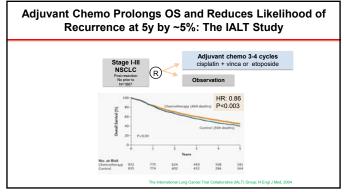


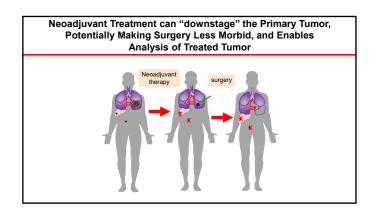


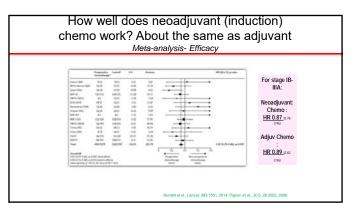


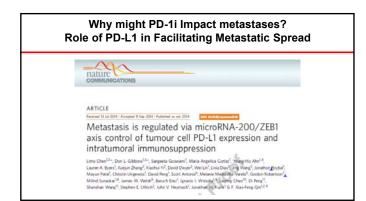


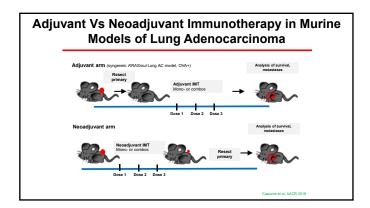


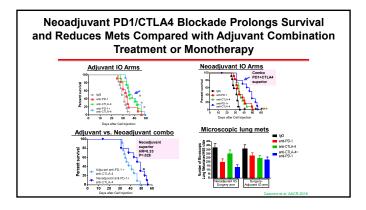


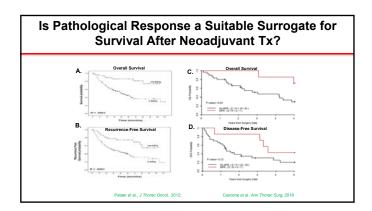


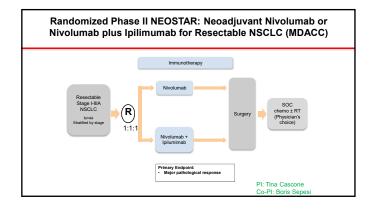


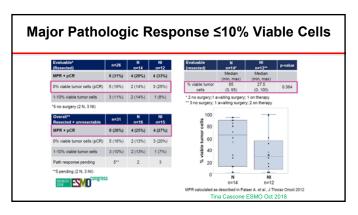


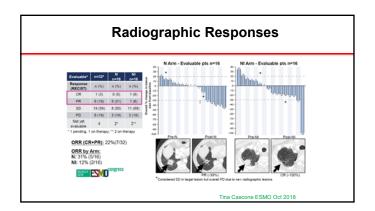


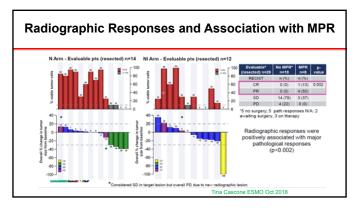


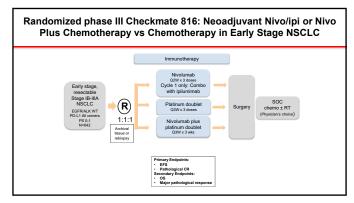












The Bottom Line

- Preclinical data suggests PD-1 + CTLA-4 blockade is superior to either alone
- Clinical trials indicate:
- -Ipi/Nivo has higher response rates than Nivo alone and higher but manageable toxicities than Nivo alone
- -Ipi/Nivo improves PFS compared to chemo in 1L high-TMB NSCLC (Checkmate 227)
- -Awaiting results of Durva/Tremi phase III studies although initial results negative
- Our group and others are exploring the use of combination immunotherapy in combination with RT and in neoadjuvant setting in an effort to increase cures.

MDAndersor

Immunotherapy with PD-1/PD-L1 (Nivolumab, Pembrolizumab, Durvalumab) and Anti-CTLA-4 (Ipilimumab) Antibodies in NSCLC

John Heymach, MD, PhD Chair, Dept. of Thoracic/Head and Neck Medical Oncology David Bruton, Jr. Chair in Cancer Research MD Anderson Cancer Center Houston, TX

Thank you

Immunotherapy with Anti-PD-L1 (Pembrolizumab) and Combination Therapy Approaches in NSCLC

Jianjun Zhang, MD, PhD

ID Anderson

Jianjun Zhang, MD, PhD Department of Thoracic Medical Oncology Department of Genomic Medicine UT MD Anderson Cancer Center

> October 27, 2018 Houston

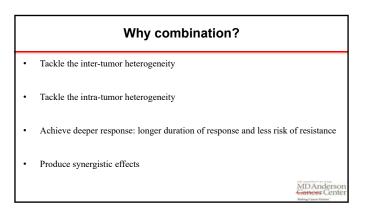
Conflict of Interest Disclosure

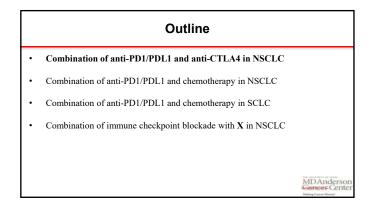
MDAnderso Concer Cente

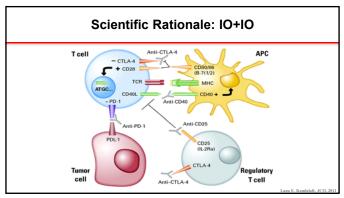
Advisory Board: AstraZeneca

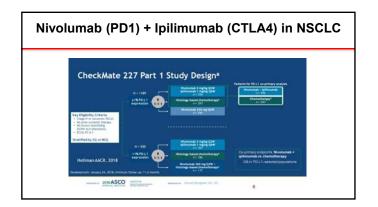
Consultant: Geneplus

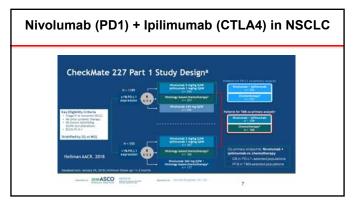
Speakers' Bureau: OrigiMed, Geneplus, Innovent

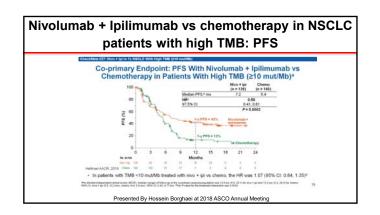

 Outline

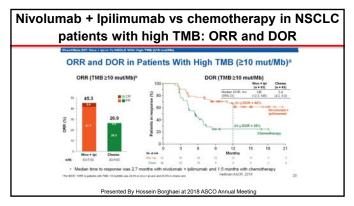

 • Combination of anti-PD1/PDL1 and anti-CTLA4 in NSCLC

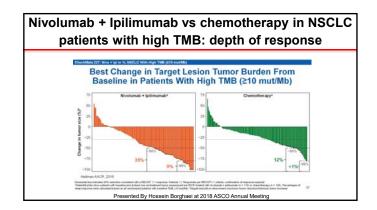

 • Combination of anti-PD1/PDL1 and chemotherapy in NSCLC

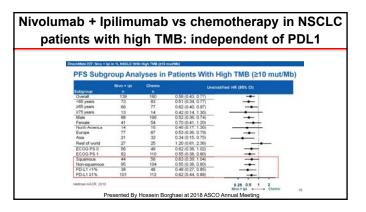

 • Combination of anti-PD1/PDL1 and chemotherapy in SCLC

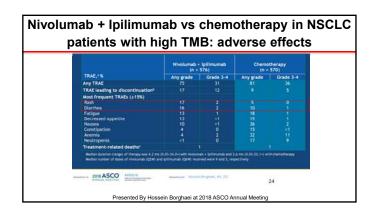

 • Combination of immune checkpoint blockade with X in NSCLC

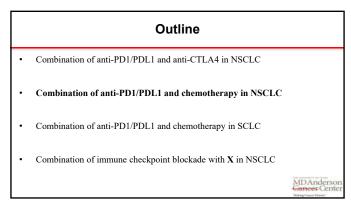


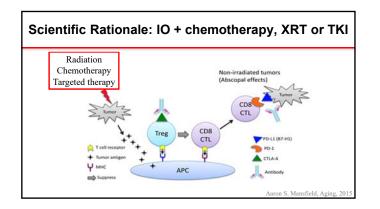


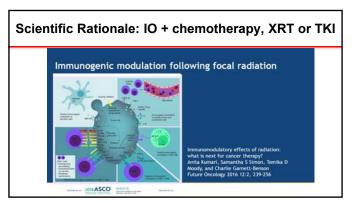


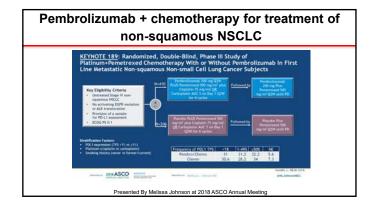


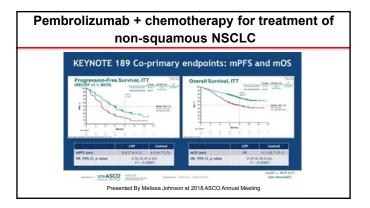


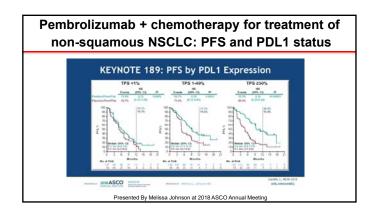


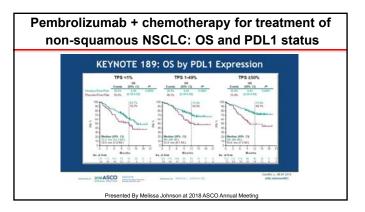


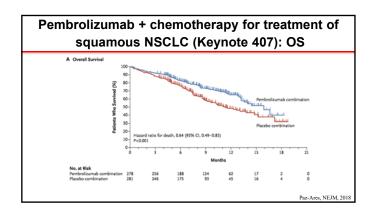


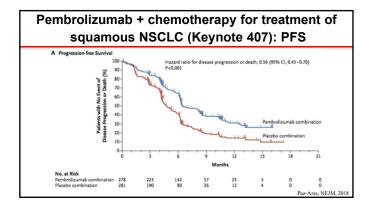


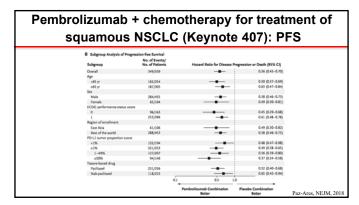


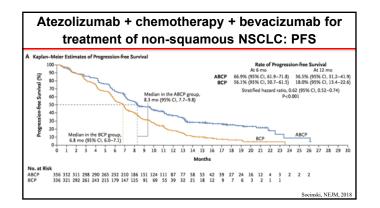


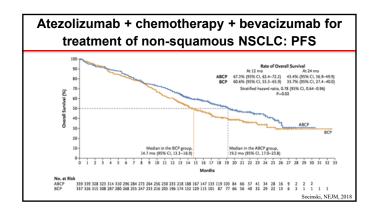


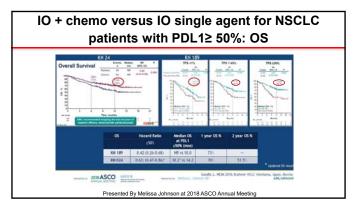


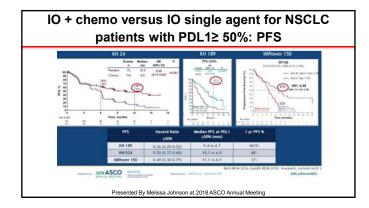


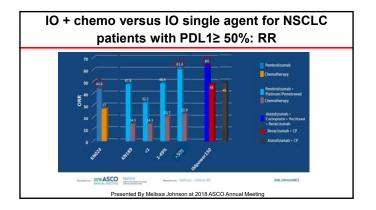


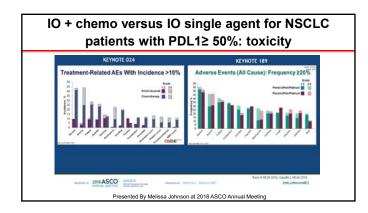


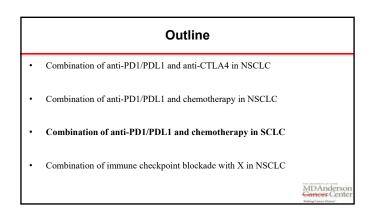

Pembrolizumab				
squamou	s NSCLC	(Keynote	407): C)S
B Subgroup Analysis of O	verall Survival			
Subgroup	No. of Events/ No. of Patients	Hazard Ratio for De	uth (95% CI)	
Overall	205/559		0.64 (0.49-0.85)	
Age				
<65 yr	88/254		0.52 (0.34-0.80)	
265 yr	117/305	- _+	0.74 (0.51-1.07)	
Sex				
Male	167/455		0.69 (0.510.94)	
Female	38/104		0.42 (0.22-0.81)	
ECOG performance-status	score			
0	48/163		0.54 (0.29-0.98)	
1	157/396		0.66 (0.48-0.90)	
Region of enrollment				
East Asia	34/106		0.44 (0.220.89)	
Rest of the world	171/453		0.69 (0.51-0.93)	
PD-L1 tumor proportion sc	ore .			
<1%	73/194		0.61 (0.38-0.98)	
a1%	129/353		0.65 (0.45-0.92)	
1-49%	76/207		0.57 (0.36-0.90)	
≥50%	53/146		0.64 (0.37-1.10)	
Taxane-based drug				
Paclitatel	140/336		0.67 (0.48-0.93)	
Nab-pacitavel	65/223		0.59 (0.36-0.98)	
	0.1	0.5 1.0		
	Per	nbrolizumab Combination P Better	acebo Combination Better	Paz-Ares, NEJM, 201

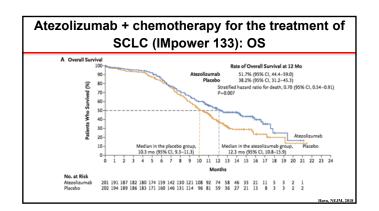


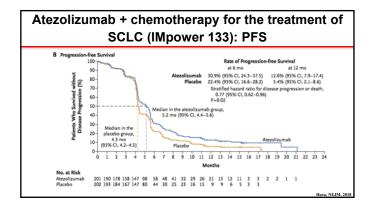


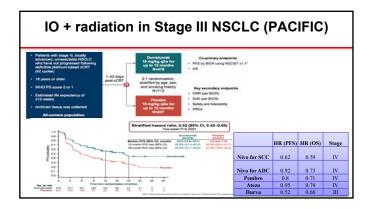


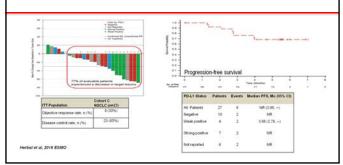

			ubgroups			
Population	No. of Patients (%)	Mo	dian ision-free val (mo)		Hazard Ratio (95% CI)
		ABCP	BCP			
ITT population	800 (100)	8.3	6.8			0.61 (0.52-0.7
Patients with EGFR or ALK genetic alternations	108 (14)	9.7	6.1		+	0.59 (0.37-0.9
WT population	692 (87)	8.3	6.8			0.62 (0.52-0.7
PD-L1 subgroups (in the WT populat	tion)					
TC3 or IC3	135 (20)	12.6	6.8	,	• • • • • • • • • • • • • • • • • • • •	0.39 (0.250.6
TC1/2/3 or IC1/2/3	354 (51)	11.0	6.8			0.50 (0.39-0.6
TC1/2 or IC1/2	224 (32)	8.3	6.6			0.56 (0.41-0.3
TC0/1/2 and IC0/1/2	557 (80)	8.0	6.8		· · · · · · · · · · · · · · · · · · ·	0.68 (0.56-0.8
TC0 and IC0	338 (49)	7.1	6.9			0.77 (0.61-0.9
Teff subgroups (in the WT populatio	n)					
High gene-signature expression	284 (43)	11.3	6.8			0.51 (0.38-0.6

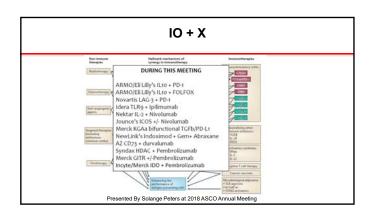




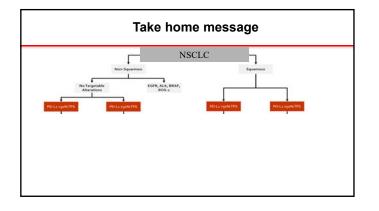


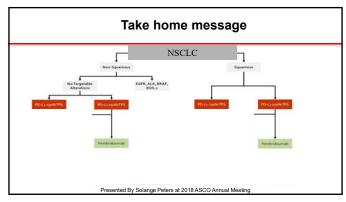


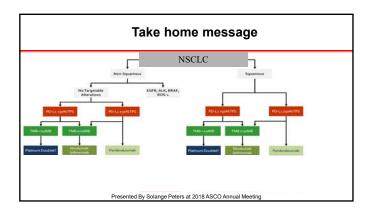

			C Overall Survival	According to Baseline	Characteristics			
	Nivolumab + l;		Subgroup	No. of Patients (%)	Median Overal Atezolizumai		Hazard Ratio for Death (95% CI)	
***	Tumor mutational burden tertile Median overall survival (95% CI), month	3.4 3.6 2	Sex Male Female	261 (65) 142 (35)	12.3	10.9		0.74 (0.54-1)
75-	1 mr+640		Age c65 yr a65 yr	217 (54) 186 (46)	12.1	11.5		0.92 (0.64-1.
50 -	ų		0 1	140 (35) 263 (65)	16.6 11.4	12.4 9.3		0.79 (0.49-1.
			Brain metastases Yes No	35 (9) 368 (91)	8.5 12.6	9.7 10.4		1.07 (0.47-2.
25 -	1 - 1 page - 10.0%		Liver metastases Yes No Tumor mutational	149 (37) 254 (63)	9.3 16.8	7.8 11.2		0.81 (0.55-1. 0.64 (0.43-0.
0 0	3 6 9 12 15 18	21 24 27 30 33	<10 mutations/8 36 a10 mutations/8 <16 mutations/7	/b 139 (34) /b 212 (53)	11.8 14.6 12.5	9.2 11.2 9.9		0.70 (0.45-1) 0.68 (0.47-0) 0.71 (0.52-0)
	Monthe		a16 mutations/9 Intention-to-treat population		17.8 12.3	11.9		0.63 0.35-1. 0.70 0.54-0.
						0.1	1.0 2	5

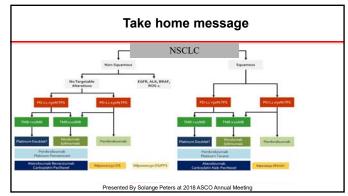


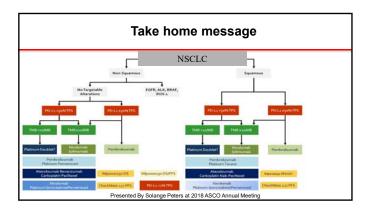
	Outline	
•	Combination of anti-PD1/PDL1 and anti-CTLA4 in NSCLC	
.	Combination of anti-PD1/PDL1 and chemotherapy in NSCLC	
.	Combination of immune checkpoint blockade in SCLC	
•	Combination of immune checkpoint blockade with X in NSCLC	
		MDAnderson Cancer Center

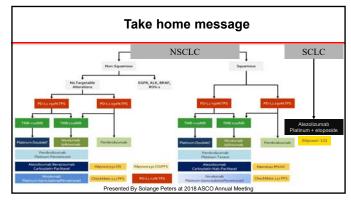


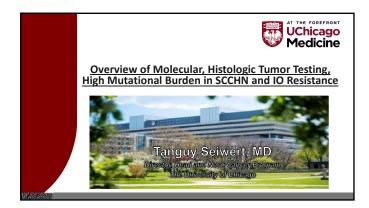

IO+ VEGF inhibitor: Ramucirumab + pembrolizumab

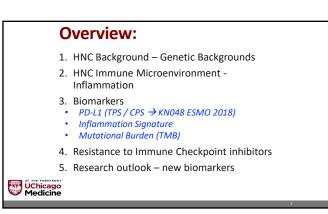


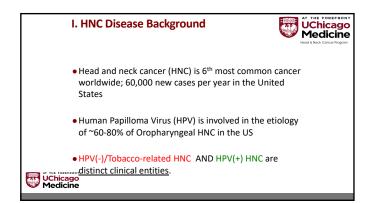


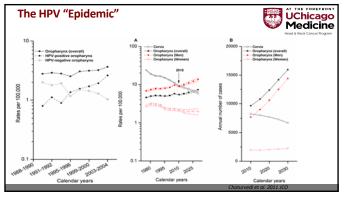

	Take home message
•	Combination of nivolumab + ipilimumab is superior to chemotherapy for treating NSCLC patients with TMB>10 independent of PDL1 status.
•	Immune checkpoint inhibitor + chemotherapy is superior to chemotherapy for treating NSCLC as well as SCLC patients overall with regards to response and survival.
•	Single agent pembrolizumab is non-inferior to IO/chemotherapy combination in NSCLC patients with PDL1 \geq 50%.

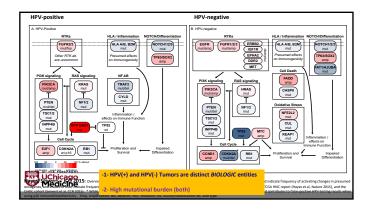


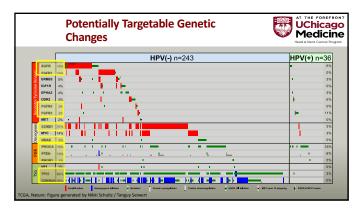


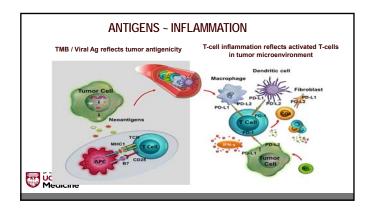


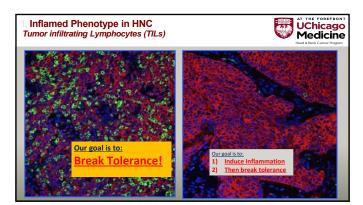

Overview of Molecular, Histologic Tumor Testing, High Mutational Burden and Implication of Immune Resistance in HPV-associated Head & Heck Cancer

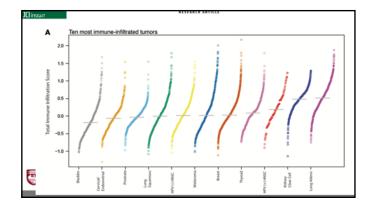

Tanguy Seiwert, MD

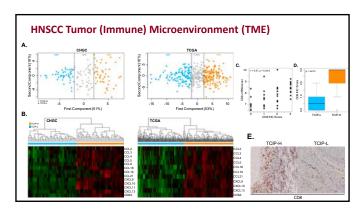


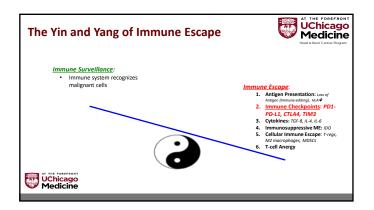


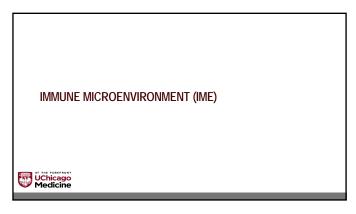


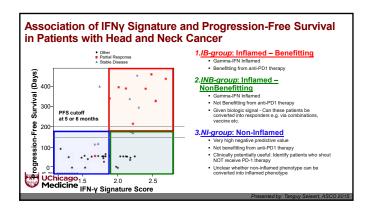


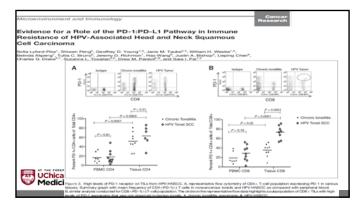


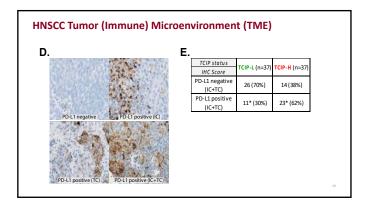


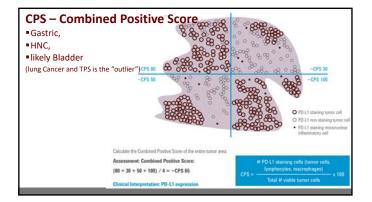


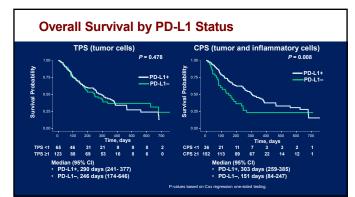




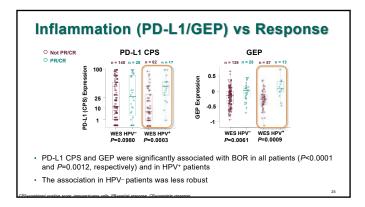


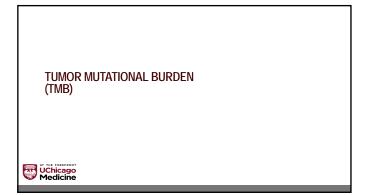


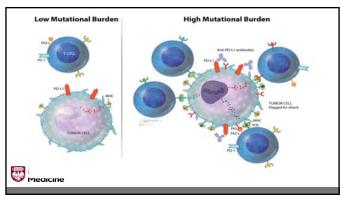


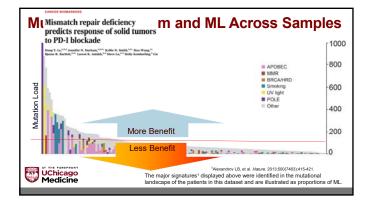


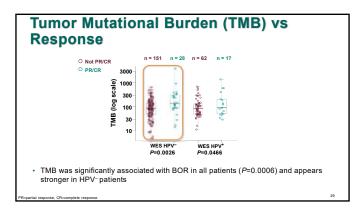
	CPS <u>></u> 20	TPS <u>></u> 50
SCCHN	39-44%	22-25%
NSCLC		25-30%

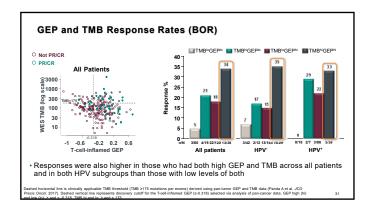


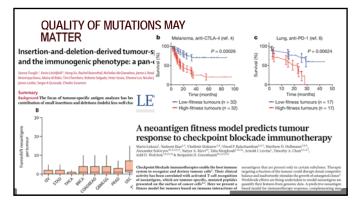


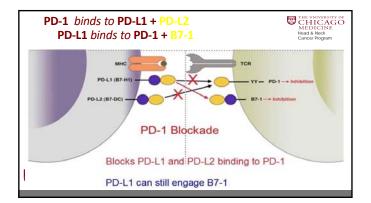

Biomarkers predictive of response to pembrolizumab in head and neck cancer (HNSCC)

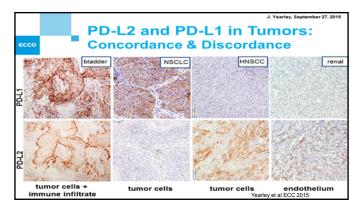

Tanguy Y, Seiwert, MD¹; Robert Haddad, MD²; Joshua Bauml, MD³; Jared Weiss, MD⁴; David G. Pfister MD⁵; Shilpa Gupta, MD⁶; Ranee Mehra, MD^{7,8}; Iris Gluck, MD⁹; Hyunseok Kang, MD¹⁰; Francis Worden, MD¹¹; J. Paul Eder, MD¹²; Makoto Tahara, MD¹³; Barbara Burtness, MD¹²; Stephen V. Liu, MD¹⁴; Andrea Webber, PhD¹⁵; Lingkang Huang, PhD¹⁵; Robin Mogg, PhD¹⁵; Razvan Cristescu, PhD¹⁵; Jonathan Cheng, MD¹⁵; Laura Q. M. Chow, MD¹⁶

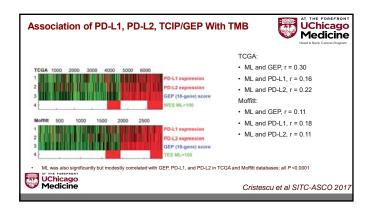

¹University of Chicago, Chicago, IL, USA, ² Dana Farber Cancer Institute, Boston, MA, ³University of Pennsylvania, Philadelphia, PA, USA; ⁴Lineberger Comprehensive Cancer Center at the University of North Carolina, Chapel Hill, NC, USA, ³Memorial Siloane Kettering Cancer Center, New York, NY, USA, ⁴Lee Molffitt Cancer center and Research Institute, Tampa FL, USA, ⁴Fox Chase Cancer Center, Philadelphia, PA, USA (study conduct), ³Johns Hopkins University, Baltimoter, MD, USA, ⁴Shaba Medical Center, Tel Hashomer, Strate, ³Sideney Kimmel Comprehensive Cancer Center, Alow Hopkins University, Baltimoter, MD, USA, ⁴University Hopkins, ¹Ana, ³Apan, ⁴Anaro Atoer MI, USA, ¹Yalia University Cancer Center, Rev Havan, CT, USA, ¹*National Cancer Center Hospital East, Kashiwa, Japan, ⁴Coeragehou University Hospital, Vashington, OC, USA, ³Metro & Aco, Inc. Kninkown, NN, USA, ³Winnersity of Washington, NS, Seatte, WA, USA

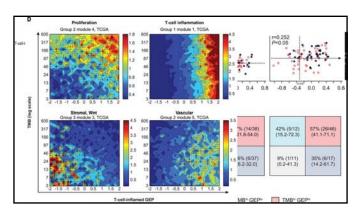


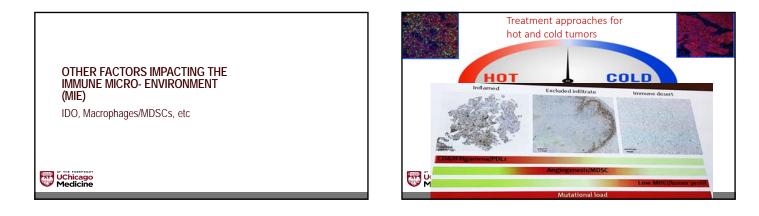


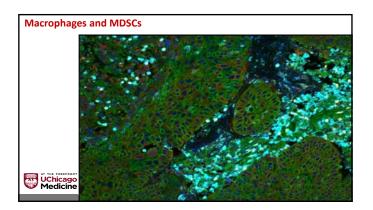


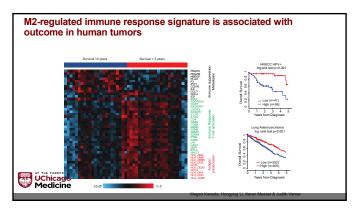


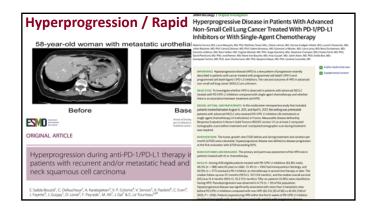


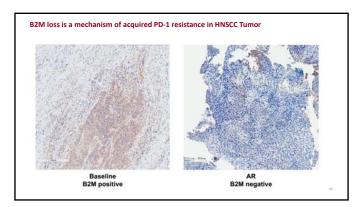


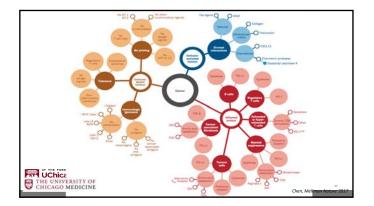


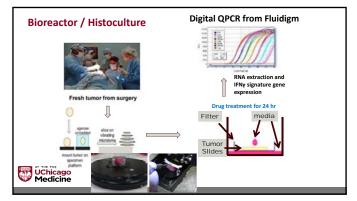


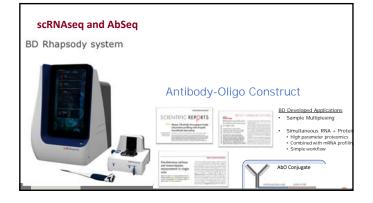


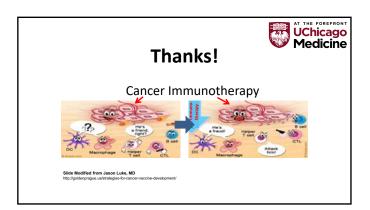








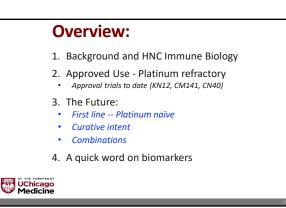


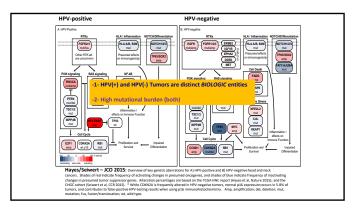

CONCLUSIONS

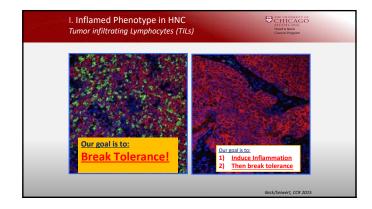
- 1. Both HPV(+) and HPV(-) HNSCC show:
 - High levels of immune cell infiltration
 - High Mutational burden (TMB) (but wiral antigens may matter n
 - An inflamed phenotype (INF-G, PD-L1/2, IDO)
- Checkpoint blockade with PD-(L)1 agents alone is unlikely to be sufficient for optimal benefit

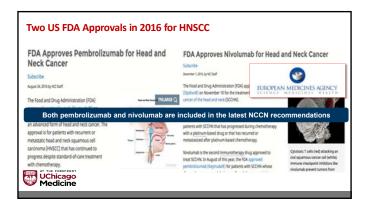
 Tregs, NK-cells, Macrophages/MDSC all may contribute to additional therapeutic opportunities (reg. Pro. JNO. ASCO 2017).
- 3. HNSCC is an excellent disease to develop Immunotherapeutic agents (Tob & Viral tumor, high levels of TMB/inflammation, IDO/Macrophages /

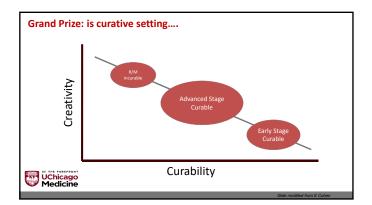
re for HPV/EBV+

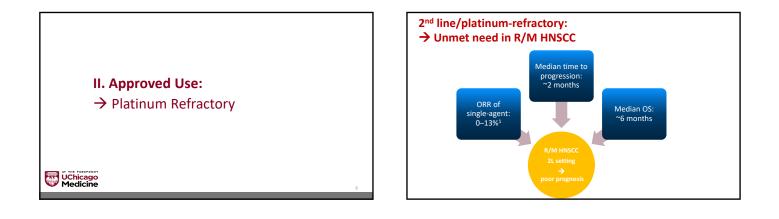

VICTOR STATES STILL only modest response rate to PD-1, injectable / accessible for biopsies)

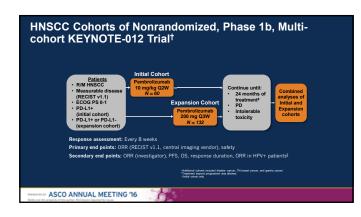

Immunotherapy Options in the Treatment of Metastatic Head & Heck Cancer

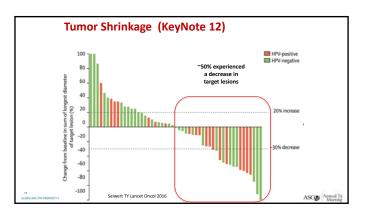

Tanguy Seiwert, MD

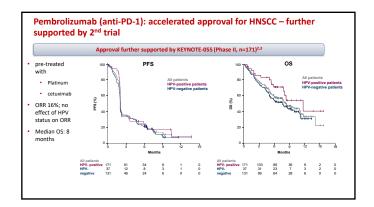


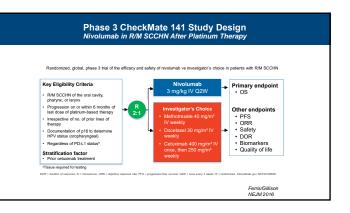


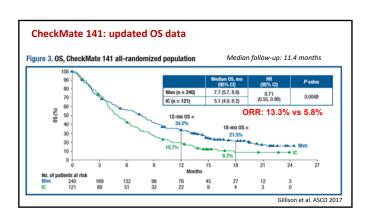


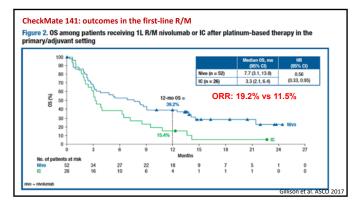


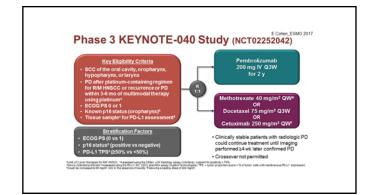


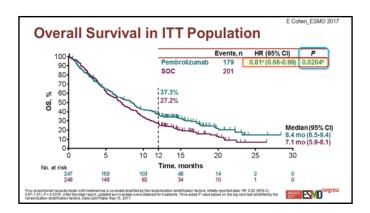


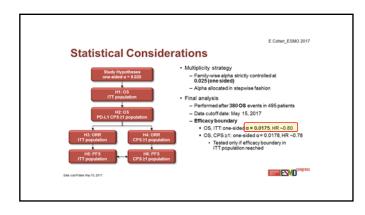

		π	reatment Settir	ıg	
Company	R/M: first-line Plat. naive	R/M: post- Platinum	Locally Advanced	Neo-adjuvant	Adjuvant/ Consolidation
MSD/Merck	KN048, KN669	KN012 KN055 KN040 KN37	KN412 (w / CRT)	KN689	
BMS	CM651 (ipi-nivo) CM714	CM141 (nivo) CM351, P1 combo expansions	RTOG3504/ BMS f/u Study (w / CRT)		
Astra-Zeneca	KESTREL	HAWK CONDOR EAGLE			
Pfizer/EMD			Javelin 100 REACH		
Roche/ Genentech					IMVoke HN

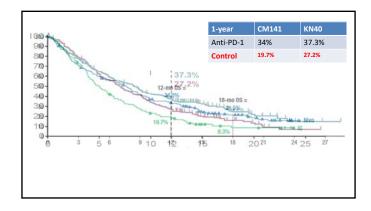


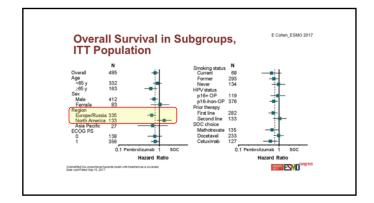


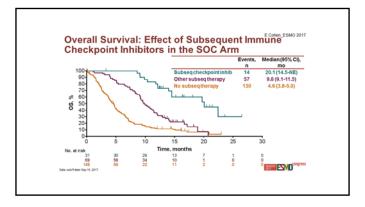


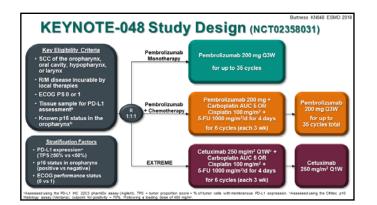


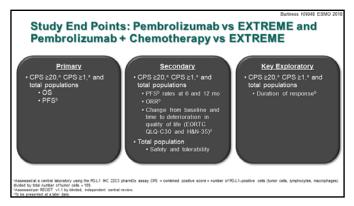


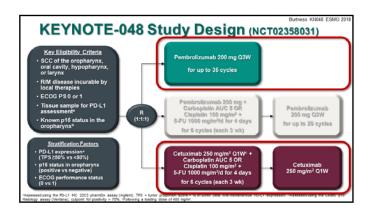


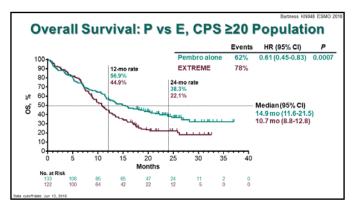


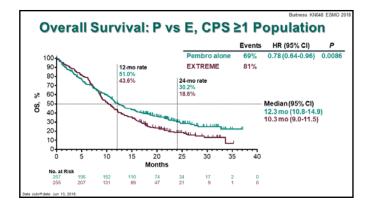


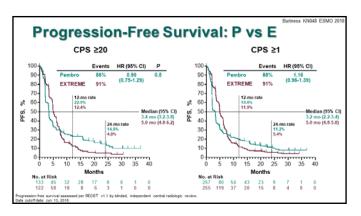

MUNICH ESMO

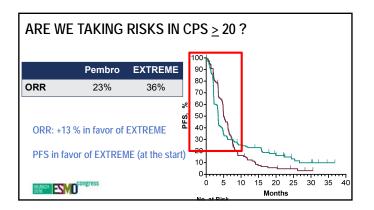

KEYNOTE-048: Phase 3 Study of First-Line Pembrolizumab for Recurrent/Metastatic Head and Neck Squamous Cell Carcinoma (R/M HNSCC)

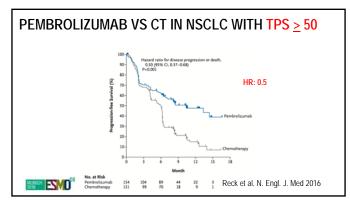

Barbara Burtness,¹ Kevin Harrington,² Richard Greil,³ Denis Soulières,⁴ Makoto Tahara,⁵ Gilberto de Castro,⁶ Amanda Psyrri,⁷ Neus Basté Rottlan,⁹ Prakash Neupane,⁹ Åse Bratland,¹⁰ Thorsten Fuereder,¹¹ Brett GM Hughes,¹² Ricard Mesia,¹³ Nuttapong Ngamphaiboon,¹⁴ Tamara Rordor,¹⁵ Wan Zamaniah Wan Ishak,¹⁰ Ananya Roy,¹⁷ Jonathan Cheng,¹⁷ Fan Jin,¹⁷ Danny Rischin¹⁸

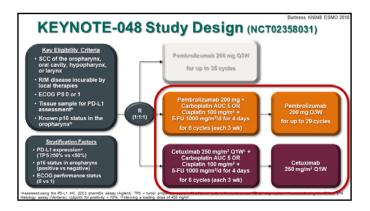

Yiele School of Medicine and Yare Canter Center, Hew Hovers, CT, USA, "The Institute of Cancer Research"the Royal Marsden NHS Foundation Trust National Institute of Internal Research Binnestic: Research Center, Lordon, USC, Research Medica, Research The Rhyal Marsden NHS Foundation Trust National Institute of Lordon of Ended & Banakarth, Center, Lordon, USC, Research Medica, Research Research, Research Research Winther of Lordon of Ended & Gas Phail, Brack: Thermac Kanodhani, Uscannes J, Kallanda, Center, Research, Yala director, Uscannes, Technica, Center, Spain, Commonly et Hattl, Gastere Rossay, Prinz, Franzi, "University relification of Lordon of Research Center, Natasa, Cencer, Yala director, Uscannes, Costa, Research, Spain, Commonly et Hattl, Gastere Rossay, Prinz, Franzi, "University relification of Lordon, Research, Cencer, Yala director, Uscan, Caster, Tana, Concelland, University Research, Natasa, Cencer, Yala "Diso University Research, Cencer, Spain, Commonly et Hattl, Gastere Rossay, Prinz, Franzity, "University relification, Cencer, Yala director, Uscan, Caster, Tana, Concelland, University Research, Natasa, Cencer, Natasa, Cencer,

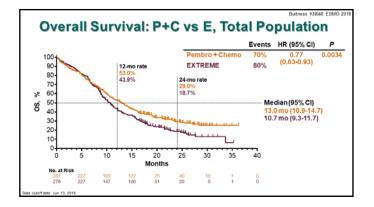

Burtness KN048 ESMO 201

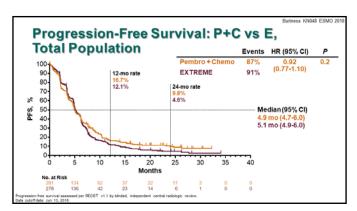


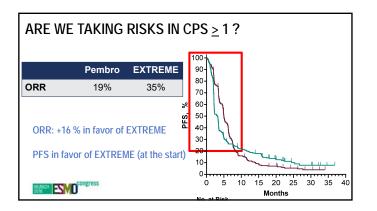


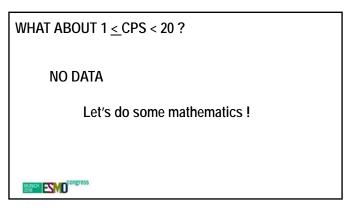


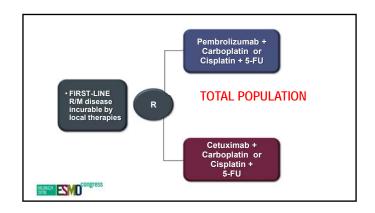


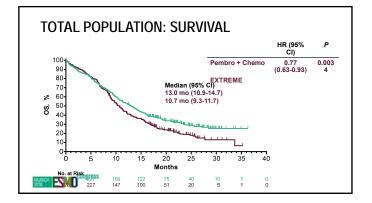


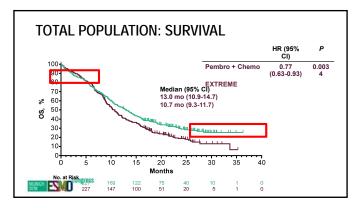


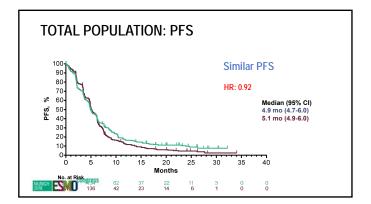



	CPS <u>≥</u> 20	TPS <u>></u> 50
SCCHN	39-44%	22-25%
NSCLC		25-30%

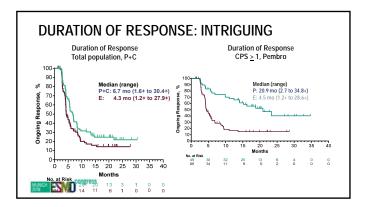


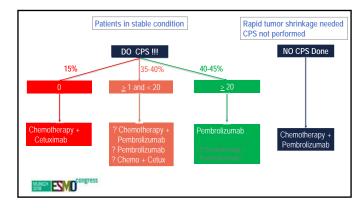


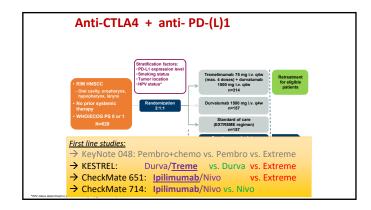


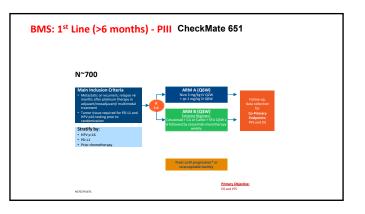


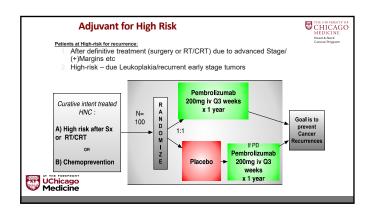

	Pembro N = 124	EXTREME N = 133
ORR	15%	34%
CR	3 %	2 %
PR	11%	32 %
SD	26 %	31 %
PD	47 %	16 %

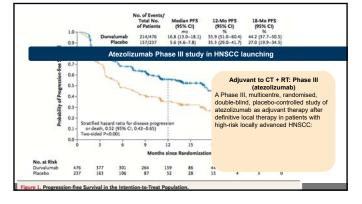


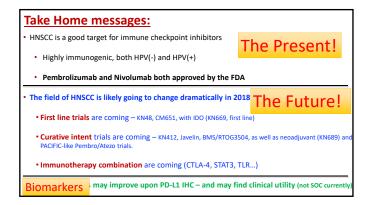


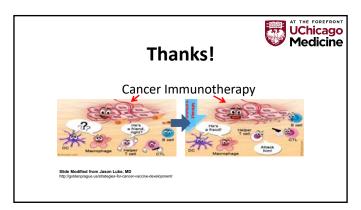







III. The Future


 \rightarrow Curative Intent

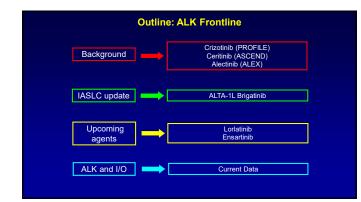

 \rightarrow years away (~2019/2020)

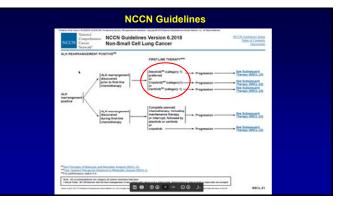
I-O CRT/RT combination trial for LA HNSCC: RTOG 3504¹, Phase 1/3 FOLLOW lumab + cetuximab + IMF Nivolumab + IMRT KEYNOTE-412², Phase 3 SCCHN HPV+ AND HPV HPV- STAGE III HPV+ T4/N2C/N -[Cisplatin + CRT umab + CRT IAVELIN H&N 100³, Phase 3 -[Դ∙ PF F/U† CRT Cisplatin + IMRT REACH⁴, Phase 3 UCh Med

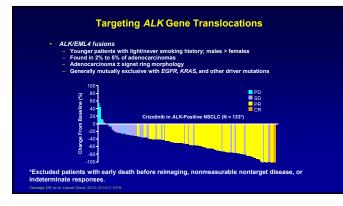
Overview of Molecular Targeted Therapy on the Outcome of Earlystage NSCLC Patients with EML4-ALK Fusion Gene and the Application of TKIs

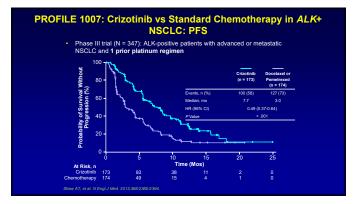
Anne Tsao, MD

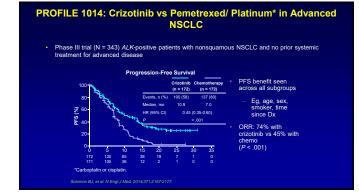
ALK – Frontline Option 2018

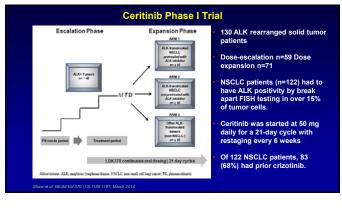

The University of Texas MD ANDERSON CANCER CENTER Anne S. Tsao, M.D. Professor Director, Mesothelioma Program Director, Thoracic Chemo-XRT Program

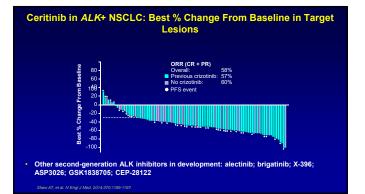

October 27, 2018

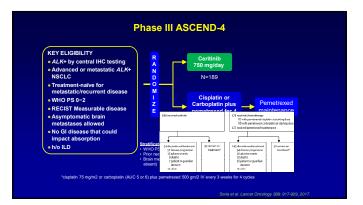

Department of Thoracic/Head & Neck Medical Oncology


Advisory Board: BMS, Genentech/Roche, Merck, Eli Lilly, Novartis, Ariad, EMD Serono, Boehringer Ingelheim, AstraZeneca, Takeda Oncology

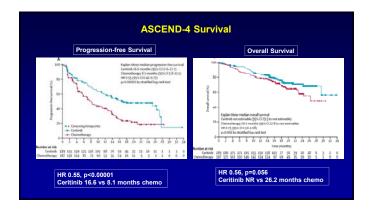


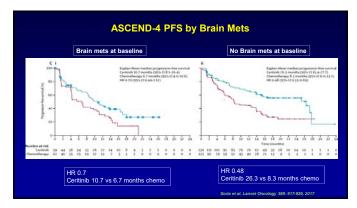

	PROFILE 1001 ¹ (N=143)	PROFILE 1005 ² (N=259)	PROFILE 1007 ³ (N=172)	PROFILE 1014 ⁴ (N=172)
Phase	1	2	3	3
Line of therapy	Any line	2 nd line and beyond	2 nd line	1 st line
ORR	61%	60%	65%	74%
PFS, median (mos)	9.7	8.1	7.7	10.9
Survival probability at 12 mos	75%	NA	70%	NA





Crizotinib


- Crizotinib had superior RR, PFS, OS compared to frontline chemo in ALK+ NSCLC.
- Crizotinib is well-tolerated with twice daily dosing.
- Crizotinib was FDA approved August 26, 2011
- Crizotinib was also FDA approved March 11, 2016 for ROS-1+ NSCLC.
- However, limited CNS penetrance.



2

	Number of patients (%)	END-4 PFS	HR 195% CD	Median PFS (95%)	(-months)
				Ceritinib (n+189)	Chemotherapy (n+187)
Scographic region					
iouth America	18 (5%)		0 65 (0 17 2 54)	2.0 (k.k. NE)	50(14112)
arriges	199 (53%)		0.54 (0.37-0.80)	17.1 (11.7.27.7)	7.1 (4.8.11.1)
laia Pacific	159 (42%)		0.60(0.28-0.96)	26-2 (11-0-NE)	9.7 (5.8-12-9)
lago (yataris)		1			
65 years	295(78%)		0.58(0.42-0.80)	171(125-277)	81(58-12-4)
65 wars	81(22%)		0.45(0.24-0.85)	14-0 (8-3-NE)	6-8 (4.2-12-8)
ex		1			
faile	160(43%) -	• 1	0 41 (0 27-0 63)	15-2 (11-0-NE)	4-3 (3-3-7-1)
emale	216 (5/%)		063(043-093)	252(110-277)	10-6 (7-6-14-5)
ace					
avanlari	202 (54%)		044(030-066)	10-4(12-1-27-7)	7/0 (43-8-5)
olasi	158(42%)		0.66 (0.43-3.06)	26-3 (8-6-NE)	10-6 (6-7-15-0)
vain metastases at screening					
beence	255 (68%)	-	0.48(0.34-0.69)	26 3 (45-4 27.7)	83(601)7)
reserve	121 (22%)		0.70 (0.44-1.12)	10.7 (8-1-16-4)	67 (41-10.6)
WHO status					
	139 (37%)		0.99 (0.37-0.96)	17-1 (11-3-NE)	9.7 (7-0-14-2)
1	226 (62%)		0 52 (0 27-0 74)	16-6 (10-9-27-7)	67(43-85)
revious adjuvant chemotherapy					
26	19(5%)		1-41(0-12-1984)	NE (6-9-NE)	NE (14-5-NE)
lo	357 (95%)		0.55(0.41+0.73)	16-4 (12-1-27-2)	7-5 (57-9-7)
isease burden per BIRL assessment		1			
aseline SUU for target lesions «median SUU for target lesions	1//(4/%)		0.51(0.52-0.80)	263(140-NE)	10-6 (7-0+14-5)
useline 50D for target lesions a median 50D for target lesions	154(49%)		0.53 (0.55-0.79)	13-9 (3-5-27-2)	3-6 (4-1-6-1)
landking history		1			
lever smoked	230 (61%)		0 56 (0 30-0 00)	16-6 (11-7-27-7)	0-3 (7-0-12-5)
2+ amoker or current amoker	145 (39%)	-	0.40 (0.30-0.77)	15-7 (9-7-26-3)	5-0 (4-1-12-4)
li patienta	376		0.55 (0.42-0.73)	16-6 (12-6-27-2)	8-1 (5-8-11-1)

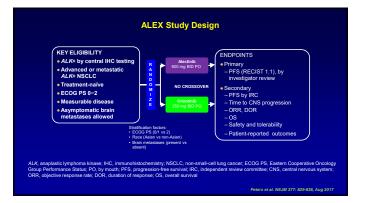
	Transa and a	14111	Here and the second	and the second
	Ceritinih (n+1		Chemotherag	
	All grades	Gialle Jor &	All grades	Grade 3 or 4
Any adverte event	\$89 (300m)	345(78%)	170(97%)	308 (62%)
Darfices	160(85%)	30 (Shi)	19 (11%)	2 (\$%)
Name	130 (69%)	5 citrai	97 (SSN)	9 (\$90
Voreterg	125 (66%)	10 (\$2%)	63(36%)	30-(6%)
Alarme armotrareferase incrussed	114(60%)	58 (82%)	30(22%)I	\$ (2%)
A spartate aminotransferane increased	\$00 (53%)	32 (37%)	34(29%)	3 (2%)
Gateria glutarightanthraw increased	70 (37%)	54(29%)	18 (20%)	3(7%)
Decreased appetite	64(34%)	2(\$%)	55 (32%)	2(2%)
Blood alkaline phosphatase increased	\$5(29%)	14(7%)	8(5%)	1(3%)
Faitgue	55 (29%)	Roamo	62 (30%)	\$ (2%)
Abdominal pain	47 (25%)	4(2%)	13(7%)	
Cough	45(24%)	0	28(26%)	0
Winght decramed	45(24%)	7.64%	26(02%)	10%
Blood countries increased	43(22%)	4(2%)	37 (30%)	
Upper abdominal pairs	29(22%)	2-(2%)	10(6%)	0
New-cardiac chert pain	38(20%)	2(3%)	17 (30%)	1/254
Kach pain	26(22%)	3(2%)	32(38%)	4(2%)
Constiguation	26 (29%)		38(22%)	
Perceta	34 (DPs)		24(54%)	2(2%)
Authority	33 (37-5)	5.0%	36(22%)	6.(2%)
malabr	21(26%)	0	21(12%)	10%
Despression	29(25%)	4(2%)	35(20%)	11(6%)
Ansamia	28(35%)	4(2%)	62 (25%)	120%
Mandandaria	9(5%)	2 (2%)	38(22%)	25(13%)
White blood cell court decreased	7(4%)	0	11(129)	7(4%)

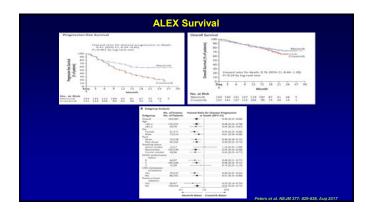
Ceritinib Practical GI Toxicity Management

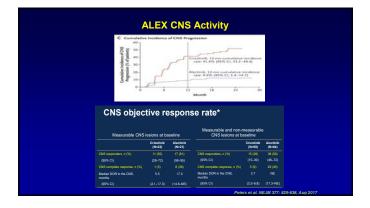
Standard practice:

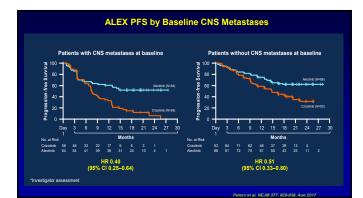
- Patient education
- Symptomatic treatment with antiemetics and/or antidiarrheal medication Take at night
- Consider taking with food.
 - Prior food effect study in healthy volunteers showed high-fat meals increased ceritinib systemic exposure by 43%
- Preventative measures
 - Empiric use of anti-emetics, anti-diarrheals, and anti-cholinergics
- Dose interruption
- Dose modification (600 mg, 450 mg)

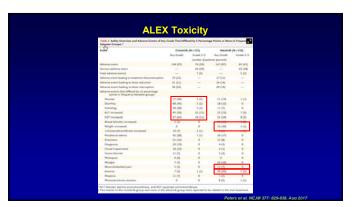
Proposed Prophylactic GI Management Strategies for Ceritinib

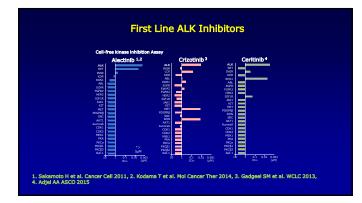

Regimen A: ondansetron 8 mg, along with either diphenoxylate and atropine 2.5 mg or loperamide 2 mg, to be taken orally 30 minutes prior to the ceritinib dose.

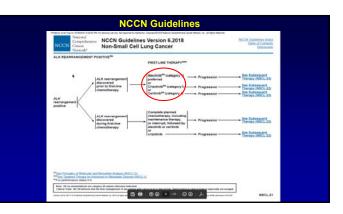

Regimen B: dicyclomine 20 mg twice daily (to be taken orally starting with the first ceritinib dose), ondansetron 8 mg (to be taken orally 30 minutes prior to ceritinib dose for the first seven doses), and loperamide 2 mg (to be taken orally as needed with the onset of diarrhea; two tablets at onset and one tablet with every loose stool).

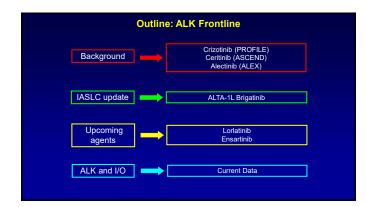

All agents were stopped at week 3 unless symptoms persisted.

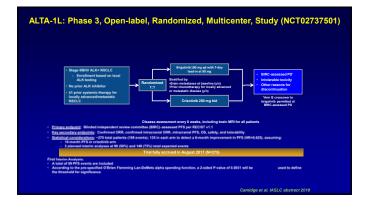

Ceritinib


- Ceritinib has improved RR, PFS and OS compared to chemotherapy in ALK+ NSCLC.
- GI toxicity management is necessary and possibly dose-reductions as well.
- FDA approved ceritinib for ALK+ salvage therapy in April 2014.
- Ceritinib was FDA approved for frontline use in ALK+ NSCLC on May 26, 2017.

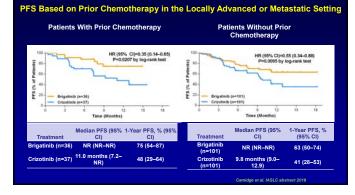

Alectinib

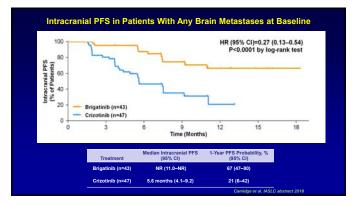

- Alectinib has improved RR, PFS and OS compared to chemotherapy in ALK+ NSCLC.
- Alectinib is well-tolerated.
- FDA approved alectinib for ALK+ salvage therapy in December 2015.
- Alectinib (600 mg BID) was FDA approved for frontline use in ALK+ NSCLC on November 6, 2017 after the ALEX trial.
- Note J-ALEX (Japan) uses 300 mg BID.


FL Trial Agent	ORR	Median PFS (months)	Intracranial median PFS (months)	OS
PROFILE 1014 (crizotinib)	74%	10.9	-	56.6% (4 Yrs)
ASCEND-4 (ceritinib)	73%	16.6	10.7 (BM+) 26.3 (BM-)	NR
ALEX (alectinib)	83%	NR	NR	NR


Agent	Toxicities
Crizotinib	Vision Transaminitis Nausea, diarrhea Peripheral edema
Ceritinib	Abdominal pain Nausea Diarrhea Transaminitis
Alectinib	Myalgia LFT elevation
Brigatinib	Pulmonary toxicity
Lorlatinib	Hypercholesterolemia CNS (delirium, MS changes)

ALK inhibitors	Ceritinib		Alectinib	Brigatinib ^a
Common AEs All grades (≥20%)	Diarrhea 85% Nausea 69% Vomiting 67% Fatigue 45% Abdominal pain 40% ↓Appetite 34% Weight loss 24% Cough 25%	Rash 21% Non-cardiac chest pain 21% Constipation 20%	Fatigue 41% Constipation 34% Edema 30% Myalgia 29%	Nausea 40% Diarrhea 38% Fatigue 36% Cough 34% Headache 27% Vomiting 23% Dyspnea 21%
Grade 3-4 AEs / Laboratory abnormalities (≥3%)	Fatigue 7% Vomiting 5% Diarrhea 4.8% Abdominal pain 3.7% Weight loss 3.7%	ÎGGT 49% ÎALT 34% ÎAST 21% ÎAST 21% ÎAMylase 8% ÎLipase 6% Anemia 4.2% ÎCreatinine 4.2% Phosphate 3.7%	Dyspnea 3.6% TALT 4.8% TCPK 4.6% Lymphopenia 4.6% Hypokalemia 4% TAST 3.6%	Hypertension 6.4% Pneumonia 5.5% Rash 3.6% †CPK 12% †Lipase 5.5% Lymphopenia 4.5% Hyperglycemia 3.6%

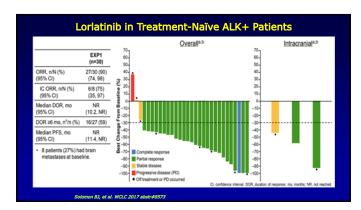




Subgroup Overall	No. of Patients Brigatinib/Crizotinib 137/138	Hazard	Ratio for Disease Prog or Death (95% CI) 0.49 (0.33 to 0.74)	ression
Age 18 to 64 years ≥65 years	93/95 44/43		0.44 (0.26 to 0.74) 0.59 (0.30 to 1.18)	At this first interim analysis, PFS dataset more mature in patients
Sex Female Male	69/81 66/57		0.44 (0.24 to 0.84) 0.49 (0.28 to 0.85)	with baseline CNS disease, particularly for crizotinib arm, which
Race Non-Asian Asian	78/89		0.54 (0.33 to 0.90) 0.41 (0.20 to 0.86)	was driven by CNS events
Smoking status" Never smoker Former smoker	84/75		0.47 (0.27 to 0.84) 0.51 (0.27 to 0.97)	% with PFS events. Crizotinib vs Brigatinib:
ECOG performance status*	58/60 73/72		0.19 (0.06 to 0.55) 0.60 (0.37 to 0.9b)	Overall: 46% vs 26% Baseline CNS disease: 59% vs 20%*
Brain metastases at baselin Yes	40/41		0.20 (0.09 to 0.46)	• No Baseline CNS disease: 40% vs
No Prior chemotherapy (locally a	97/97 dvancedimetastatic settingi		0.72 (0.44 to 1.18)	29%4
Yes No	36/37 101/101	0 05 10	0.35 (0.14 to 0.85) 0.55 (0.34 to 0.88) 1.5 2.0	
	Beter		izotinib Better	

Systemic Objective Response ^a (ITT Population)				Intracranial Objecti Brain Me			
	Brigatinib n=137	Crizotinib n=138	OR (95% CI)	Measurable ⁶ brain metastases at baseline	Brigatinib n=18	Crizotinib n=21	OR (95% CI)
Confirmed ORR, % (95% CI)	71 (62–78)	60 (51–68)	1.59 (0.96-2.62) P=0.0678	Confirmed intracranial ORR, % (95% CI)	78 (52-94)	29 (11-52)	10.42 (1.90-57.05 P=0.0028
Confirmed CR, %	4	5		CR, %	11	0	
Confirmed PR, %	67	55		PR, %	67	29	
ORR at ≥1 assessment, % (95% CI)	76 (68–83)	73 (65–80)	1.13 (0.66–1.97) P=0.6512	Intracranial ORR at ≥1 assessment, % (95% CI)	83 (59–96)	33 (15–57)	9.29 (1.88-45.85) P=0.0023
CR, %	7	8		Any brain metastases at baseline			
PR, %	69	65		Confirmed intracranial ORR. %	n=43 67	n=47 17	13.00 (4.38-38.61)
Median DoR in confirmed	NR	11.1		(95% CI)	(51-81)	(8-31)	P<0.0001
responders, mo (95% CI)	(NR-NR)	(9.2-NR)		CR, %	37	4	
12-month probability of maintaining response, % (95%	75 (6383)	41 (26–54)		PR, %	30	13	
CI)	(03-63)	(20=64)		Intracranial ORR at ≥1 assessment, % (95% CI)	79 (64–90)	23 (12–38)	16.30 (5.32-49.92) P<0.0001




	Brigatinib	(n=136), %	Crizotinib	(n=137), %		Brigatinib			
	Any Grade	Grade ≥3	Any Grade	Grade ≥3		Any Grade	Grade ≥3	Any Grade	Grade ≥3
Diamhea	49	1	55	2	Dyspepsia	6	0	13	0
Increased blood CPK	39	16	15	1	Epistaxis	6	0		0
Nausea	26	1	56	3	Bradycardia	5	1	12	0
Cough	25	0	16	0	Peripheral edema	4	1	39	1
Increased AST	23	1	25	6	Dysgeusia	4	0	19	0
Hypertension	23	10	7	3	Upper abdominal pain	4	1	13	1
Increased ALT	19	1	32	9	Pain in extremity	4	0	12	1
Increased lipase	19	13	12	5	Increased blood creatinine	2	0	14	1
Vomiting	18	1	39	2	Neutropenia	1	0		4
Constipation	15	0	42	1	Pleural effusion	1	1	7	1
Increased amylase	14	5		1	Photopsia	1	0		1
Pruritus	13	1	4	1	GERD	1	0		0
Rash	10	0	2	0	Hypoalbuminemia	1	0	6	1
Decreased appetite	7	1	20	3	Visual impairment			16	0
Dermatitis acneiform	7	0	1	0	Deep vein thrombosis	0	0	6	0
 Early-onset ILD/p Dose reduction due For brigatinib, red AST, hypertensio No clinical cases of 	neumonitis (w to AEs (brigat ductions due t n, pneumoniti pancreatitis ir	rithin 14 da inib/crizoti io increase is, pruritic i i either arm	ys of treatmi nib): 29%/21 1 CPK (10.3% ash (1.5% ea ; no differen	ant initiation %; discontin 6), increased (ch) ce in incider	5/136); crizotinili 2% (3/13)): brigatinili, 3% (onset: Da uation due to AEs: 12% 9% I lipase (5.1%); increased a nce of any grade myalgia o 23 myalgia or musculosko	rys 3–8); criz (mylase (2.9) r musculosk	6) and incre eletal pain I	ased	
Briga	atinib ex	cess	AEs do	minate increa	d by CPK, lipas	se, and	amyla	se	

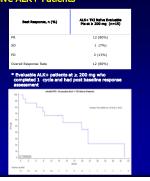
Brigatinib

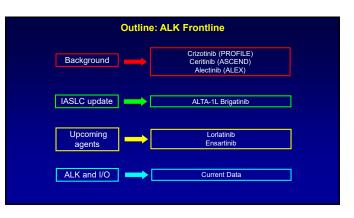
- ALTA-11 was conducted in ALK+ patients defined using multiple ALK diagnostics and allowed for prior chemotherapy exposure
- Brigatinib has a superior PFS versus crizotinib by BIRC (HR, 0.49; P=0.0007)
- Brigatinib was well tolerated.
- Early-onset pneumonitis may be unique to brigatinib among ALK TKIs, but is rare (3%) and the event rate appears lower in ALTA-1L than in later line trials.
- Brigatinib was granted FDA accelerated approval for crizotinib-refractory ALK+ NSCLC on April 28, 2017.
- Brigatinib is a new first-line treatment option for ALK+ NSCLC

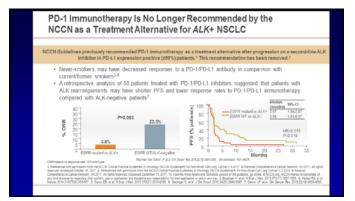
Sponsor Trial Agent Comparison N Anticipated dates NCT dates Pfizer CROWN Lorlatinib Crizotinib 280 Dec 2019 NCT03052608 XCovery eXalt3 Ensartinib Crizotinib 402 April 2020 NCT02767804	dates Pfizer CROWN Lorlatinib Crizotinib 280 Dec 2019 NCT03052608	Frist Line ALK-TKI - Phase III Trials									
		Sponsor	Trial	Agent	Comparison	N		NCT			
XCovery eXalt3 Ensartinib Crizotinib 402 April 2020 NCT02767804	XCovery eXalt3 Ensartinib Crizotinib 402 April 2020 NCT02767804	Pfizer	CROWN	Lorlatinib	Crizotinib	280	Dec 2019	NCT03052608			
		XCovery	eXalt3	Ensartinib	Crizotinib	402	April 2020	NCT02767804			

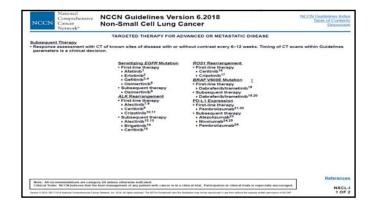
Ensartinib in Treatment-Naïve ALK+ Patients

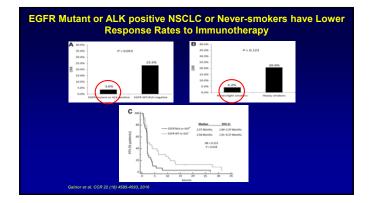
Ensartinib targets EML4-ALK and point mutations T1151M, G1269A, L1196M, G1202R, and V1149M.

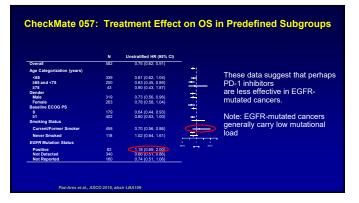

Ensartinib also targets MET, ABL, AxI, EPHA2, LTK, ROS1, and SLK.

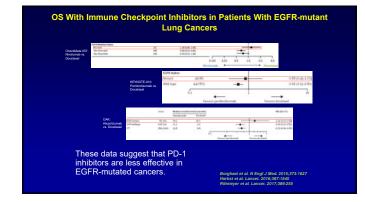

In crizotinib refractory ALK patients, ORR 72%

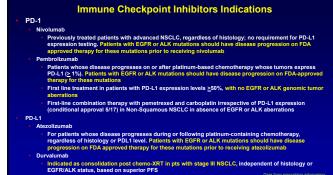

In pretreated patients with at least one 2^{nd} gen TKI, ORR 23% and DCR 50%


Ensartinib 225 mg po daily


Wakelee et al, WCLC 2017, MA07.02







8

Thank you

Data from prescribing information;

The University of Texas MD ANDERSON CANCER CENTER Professor Director, Mesothelioma Program Director, Thoracic Chemo-XRT Program

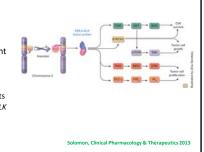
October 27, 2018

Anne S. Tsao, M.D.

Department of Thoracic/Head & Neck Medical Oncology

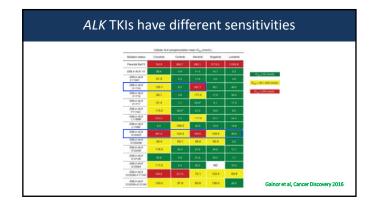
Discuss Emerging Strategies and Challenges Due to Secondary or Acquired Resistance to Small Molecule TKIs in Patients with ALKrearranged NSCLC

Vincent Lam, MD

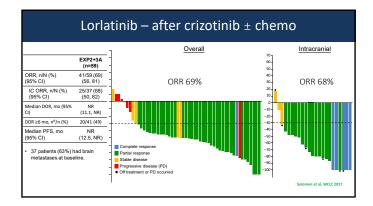

Strategies for Acquired Resistance to ALK TKIs

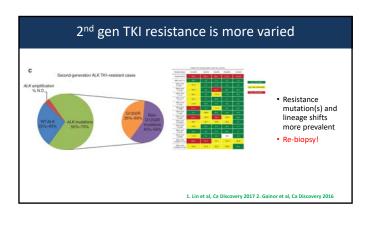
Vincent Lam, M.D. Assistant Professor, MD Anderson Cancer Center Houston, TX

October 27, 2018


- Diagnosed by FISH, IHC, RT-PCR, NGS
- More than 20 different ALK fusion partners across different cancers
- Multiple variants per given fusion protein
- EML4-ALK has over 10 variants
 Variants can have different ALK TKI sensitivity

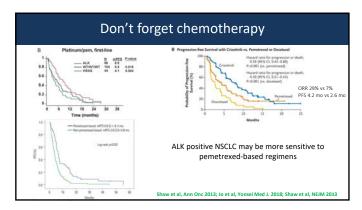
No relevant financial disclosures

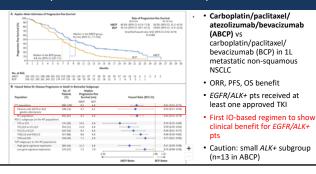


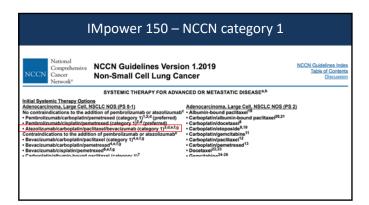


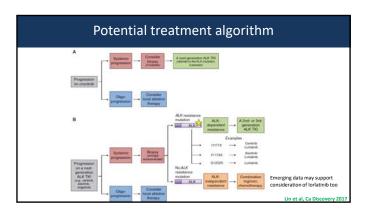
1

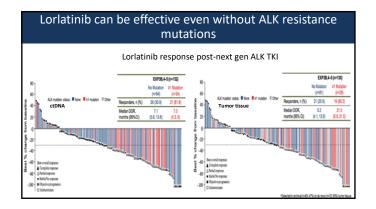
	Ceritinib	Alectinib	Dutanti the 400 mm	Lorlatinib	Ensartinib
	ASCEND-5 (Ph 3) ¹	Alectinib ALUR (Ph 3) ²	Brigatinib 180mg ALTA (Ph 2) ³	(Ph 1/2) ⁴	(Ph 2) ⁵
		FDA approval		FDA breakthrough	
ORR	39%	38%	55%	73%	69%
Intracranial ORR	35%	54%	67%	70%	64%
Median PFS	5.4 mo	9.6 mo	16.7 mo	11.1	9.0 mo
Toxicity considerations	GI (diarrhea, nausea, vomiting)	Constipation, fatigue, myalgia	GI, elevated CPK, early onset pulmonary events (6%)	Hypercholesterolemia, hypertriglyceridemia, weight gain, confusion/hallucinations (3%)	Rash, nausea, pruritis
Dose reduction	61%	4%	30%	25%	25%

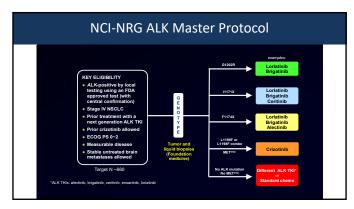

rigatinib post-ci	rizotinil	o pooled	mutatio	nal anal	ysis
		Phase 1/2	ALTA	Total	Lower rate of ALK
Patients with baselindata, n	ne NGS	15ª	17 ^b	32	resistance mutation but generally still Al
Confirmed ORR, % (r	n/N)	80 (12/15)	59 (10/17)	69 (22/32)	dependent
Patients with secon mutations at baselin		5	4	9	More potent ALK TK
Confirmed ORR, % (r	n/N)	80 (4/5)	75 (3/4)	78 (7/9)	typically works
Patients without sec ALK mutations at ba		10 ^a	13 ^b	23	Consider re-biopsy, but not required
Confirmed ORR, % (r	n/N)	80 (8/10)	54 (7/13)	65 (15/23)	-


Curr	Current post-alectinib landscape								
	Ceritinib ASCEND-9 (Ph 2, n=20) ¹	Brigatinib (retrospective, n=22) ²	Lorlatinib (Ph 1/2) ³ , awaiting FDA approval	Ensartanib (Ph 2) ⁴ , trial on-going					
ORR	25%	17%	40%	25%					
Intracranial ORR	25%	25%	41%	NR					
Median PFS	3.7 mo	4.4 mo	5.5 mo	1.9 mo					
 MDACC 	Brigatinib FDA labe clinical trial evalua et al, Cancer Sci 2018 2. Lin e	ting Ceritinib + Eve	rolimus (NCTO	2321501)					


Lorlatinib has broad post-2nd gen TKI activity


	Alectinib	Ceritinib	Brigatinib
OVERALL			
N	62	47	8
ORR			
%	40.3	42.6	37.5
95% CI	28.1-53.6	28.3-57.8	8.5-75.5
DOR,° months			
Median	5.6	6.9	NC [®]
95% CI	4.2-24.4	5.6-NR	
Progression-free survival, ^a months			
Median	5.5	7.3	NC ^o
95% CI	4.1-7.1	5.5-11.1	
INTRACRANIAL - Overall			
N	37	35	5
IC ORR			
%	40.5	54.3	40.0




IMpower 150 – a chemolO option for *ALK*

Summary

- Consider local therapy for oligoprogression
- Post-crizotinib: next-generation ALK TKIs are very active • Alectinib/brigatinib preferred (CNS, more potent, resistance mutations)
 - Lorlatinib has FDA breakthrough designation
- Optimal therapy post-next generation ALK TKI is not well defined, should re-biopsy
 - Resistance mechanisms may guide use of another TKI
 - Otherwise, platinum/doublet or chemolO (IMpower 150)
 - Lorlatinib FDA approval expected; ensartinib currently in trial

Thank you

Vincent Lam, M.D. Assistant Professor, MD Anderson Cancer Center Houston, TX

October 27, 2018

For online registration and more information visit: www.cancernetus.com